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Abstract

Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, 

has emerged as a promising treatment for mild cognitive impairment (MCI) and Alzheimer’s 

disease (AD). Currently, however, the effectiveness of this therapy is unclear due to the low 

statistical power and heterogeneity of previous trials. The purpose of the meta-analysis was to 

systematically characterize the effectiveness of various combinations of rTMS parameters on 

different cognitive domains in patients with MCI and AD. Thirteen studies comprising 293 

patients with MCI or AD were included in this analysis. Random effects analysis revealed an 

overall medium-to-large effect size (0.77) favoring active rTMS over sham rTMS in the 

improvement of cognitive functions. Subgroup analyses revealed that 1) high-frequency rTMS 

over the left dorsolateral prefrontal cortex (DLPFC) and low-frequency rTMS at the right DLPFC 

significantly improved memory functions; 2) high-frequency rTMS targeting the right inferior 

frontal gyrus significantly enhanced executive performance; and 3) the effects of 5–30 consecutive 

rTMS sessions could last for 4–12 weeks. Potential mechanisms of rTMS effects on cognitive 

functions are discussed.
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INTRODUCTION

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that 

is increasingly utilized for a growing number of research and clinical applications. To 

perform TMS, a magnetic field that reaches a strength of up to 2 Tesla is rapidly generated 

in <1 ms. Typically, this transient magnetic field is focally applied with a Figure-of-Eight 

coil that is carefully placed on the surface of the scalp over a targeted stimulation site. 

Leveraging Faraday’s principle of electromagnetic induction, this magnetic field penetrates 

the skull and generates an electric current in the more conductive brain tissue in a direction 

that is perpendicular to the applied magnetic field (Barker, et al., 1985, Hallett, 2007). If this 

orthogonal electrical current is strong enough to surpass a physiological threshold, it can 

depolarize neurons in the targeted cortical tissue. Due to the nature of the exponentially 

decaying electromagnetic field, the penetration depth is limited to 2–3 centimeters. Thus, 

only superficial brain tissue can be directly stimulated by TMS, but this excitation can be 

propagated to distal targets through circuits that are structurally and/or functionally 

connected to the stimulation site (Chou, et al., 2015b, Liston, et al., 2014, Wang, et al., 

2014). In the corticospinal system, for example, when the motor cortex is stimulated with a 

suprathreshold TMS pulse, this direct excitation evokes a series of descending corticospinal 

volleys in the form of Direct (D-) and Indirect (I-) waves, which ultimately elicits a motor 

response in the corresponding limb (Bestmann and Krakauer, 2015).

Contrary to single-pulse TMS, patterned repetitive TMS (rTMS) can produce long-lasting 

effects on neural activity and behavior beyond the stimulation period (Chou, et al., 2015a, 

Fitzgerald, et al., 2006). Careful manipulation of the parameters comprising these patterned 

rTMS pulse trains can induce neuroplastic changes that resemble either Long-Term 

Potentiation (LTP) or Depression (LTD) (Chen, et al., 1997, Pascual-Leone, et al., 1994). 

Early studies targeting the motor cortex helped elucidate which rTMS parameters promote 

particular responses and their neurophysiological underpinnings (Klomjai, et al., 2015). 

More recently, this ability to evoke distinct long-lasting changes in neural activity has been 

leveraged for therapeutic applications in neuropsychiatric disease. In 2008, for example, 

TMS devices were cleared for market by the Food and Drug Administration (FDA) for the 

clinical treatment of medication-resistant Major Depression Disorder. The specific FDA 

approved protocol is comprised of a high-frequency stimulation protocol, which is known to 

produce an excitatory LTP-like effect, over the Left Dorsolateral Prefrontal Cortex (DLFPC) 

(O’Reardon, et al., 2007). However, as an extension of the prefrontal asymmetry 

phenomenon, it has also been reported that inhibitory LTD-like low-frequency rTMS over 

the Right DLPFC is equally efficacious in producing anti-depressive outcomes in this patient 

population (Fitzgerald, et al., 2009, Sutton and Davidson, 1997). In other words, prefrontal 

activity in patients with MDD is abnormally imbalanced with right-sided hyperactivity and 

left-sided hypoactivity. Thus, distinct rTMS protocols that are known to produce opposite 

neurophysiological effects must be specifically applied depending on the targeted site of 

stimulation. This interaction between rTMS protocol and stimulation site has also been 

documented in the treatment of neurodegenerative disease (Chou, et al., 2015a). 

Accordingly, it is necessary to carefully discern the rTMS parameters when evaluating its 

potential efficacy in all neurologic and psychiatric conditions.
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In recent years, rTMS has been closely investigated to evaluate its potential to modulate 

cognitive functions in AD and MCI. Here, we extend previous important reviews (Birba, et 

al., 2017, Cheng, et al., 2017, Dong, et al., 2018, Hsu, et al., 2015, Liao, et al., 2015, 

Nardone, et al., 2014) by including rTMS studies among both patients with AD or MCI to 

evaluate and update the efficacy of rTMS intervention compared to sham controls. 

Additionally, we sought to give greater attention to the methodological components of these 

existing studies. Considerable heterogeneity exists among the various rTMS treatment 

protocols that have been reported for cognitive enhancement for AD and MCI in the 

literature (e.g., different combinations of stimulation site, pulse frequency, stimulation 

intensity, number of stimuli delivered, and number of treatment sessions). A systematic and 

quantitative review that delineates rTMS effects based on various rTMS treatment protocols 

is not available. It is important to integrate these findings in a manner that accounts for this 

methodological heterogeneity to more accurately estimate the effects of rTMS in AD and 

MCI. Furthermore, we systematically characterize the effectiveness of various combinations 

of rTMS parameters on different cognitive domains in patients with AD and MCI. The 

distilled findings presented herein can be used to improve the experimental design of future 

rTMS clinical trials.

METHODS

Search Strategy

Our meta-analysis was conducted in accordance with the preferred reporting items for 

systematic reviews and meta-analyses (PRISMA) statement (Moher, et al., 2009) (Figure 1). 

To identify studies for inclusion in this meta-analysis we searched PubMed, Web of Science, 

Current Contents Connect, and SciELO Citation Index through March 2019. Databases were 

searched using combinations of the following terms: Alzheimer’s disease or mild cognitive 

impairment and repetitive transcranial magnetic stimulation (or rTMS or repetitive TMS). 

Additionally, we searched reference lists of previous reviews on rTMS for AD/MCI (Birba, 

et al., 2017, Cheng, et al., 2017, Dong, et al., 2018, Hsu, et al., 2015, Liao, et al., 2015, 

Nardone, et al., 2014) to identify additional relevant articles.

Inclusion Criteria for the Selection of Studies

We included studies that met all of the following criteria: 1) clinical population of patients 

previously diagnosed with AD or MCI; 2) rTMS was the only intervention being 

investigated; 3) cognitive functions were assayed as a behavioral outcome measure; 4) 

parallel or cross-over design that utilized a sham-controlled group or condition; and 5) 

articles written in English. Studies identified through database searches were initially 

screened on the basis of their title and abstract. They were subsequently excluded if it was 

clear from the title or abstract that the study was not relevant or did not meet the inclusion 

criteria (see Supplementary Table 1). If it remained unclear, the paper was assessed in its 

entirety. Additionally, studies were excluded if they were conference abstracts/papers.

Data Extraction

Two authors (YHC and VTT) independently performed the data extraction and any 

disagreements were resolved by joint discussion. Extracted data included sample size, 
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sample characteristics, study design, rTMS protocol, statistical data of the score of cognitive 

performance for effect size estimation, and timing of outcome measurements (short-term: 

within 1 hour of the final rTMS session or long-term: ≥ 4 weeks post-rTMS). When 

published data were insufficient for data analysis, the original study author(s) were contacted 

with requests for access to additional data.

Statistical Analysis

Effect size calculation.—We used standardized mean difference (SMD, also known as 

Cohen’s d) to express the effect size of rTMS on cognitive functions. A random-effects 

model was used to calculate pooled effect sizes and examine whether the averaged effect 

size was significantly different from zero (p < 0.05, two-tailed). The mean effect was 

expressed as SMD with 95% confidence intervals. Generally, one effect size was derived 

from each study. If a study had multiple effect sizes from the same patient group (e.g., short-

term and long-term rTMS effects; or different cognitive measures), we obtained one 

averaged effect size across multiple effect sizes within that particular study. If the effect 

sizes were reported from mild AD and severe AD separately within a single study or if the 

effect sizes were estimated from 2 independent subgroups of patients who received rTMS 

with different protocols, then the data were included as 2 independent units in the meta-

analysis.

Due to the heterogeneity of cognitive measures included in each study, we first derived an 

effect size from the main outcome measures reported in each study. We then performed a 

sensitivity analysis that included additional secondary or exploratory cognitive measures 

(Please refer to the Sensitivity Analysis Section below). The cognitive tasks used for the 

estimation of effect size (i.e., the main outcome measures reported in each study) included 

the mini-mental status evaluation (MMSE), AD assessment scale cognitive subscale (ADAS-

cog), Rey auditory verbal learning test (RAVLT), Rivermead behavioral memory test 

(RBMT), Battery for analysis of aphasic deficits, trail making task, Stroop color-word task, 

word-image association task, recognition memory task, and action naming and object 

naming task.

Additionally, although our overall effect was estimated across diagnosis (AD and MCI), 

number of rTMS sessions (i.e., short and long rTMS manipulation), rTMS site, rTMS 

frequency (i.e., low frequency: ≤ 1 Hz and high frequency: ≥ 5 Hz), cognitive measures, and 

timing of outcome measurements (i.e., short-term: within 1 hour of the final rTMS session 

and long-term: ≥ 4 weeks post-rTMS), these potential rTMS moderating effects were 

investigated in the subgroup analyses (Please refer to the Subgroup Analyses Section 

below).

Heterogeneity analysis.—We used the Q statistics and the I2 index to assess 

heterogeneity. A probability value less than 0.05 and I2 greater than 40% is indicative of 

heterogeneity between included studies as it exceeds what is expected by chance (Higgins, et 

al., 2003).

Publication or selection bias.—Publication/selection bias was evaluated with Egger’s 

Test of Asymmetry (Egger, et al., 1997) and Orwin’s fail-safe N approach (Borenstein, et al., 
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2009). In the absence of publication/selection bias, effect sizes are symmetrically distributed 

around the overall average effect size, since the sampling error is random. Egger’s test 

evaluated whether the amount of asymmetry is significant. In addition, studies that 

demonstrated lack of benefit might not have been submitted and/or accepted for publication. 

Therefore, we used the Orwin’s fail-safe N to estimate the number of missing studies (with a 

mean effect size of 0) that would need to be incorporated in our meta-analysis to make the 

summary effect become trivial.

Subgroup analyses.—Our pre-specified categories for subgroup analyses included 

diagnosis (AD and MCI), rTMS site, rTMS frequency (low: ≤ 1 Hz and high: ≥ 5 Hz), 

cognitive measures, timing of outcome measurements (short-term: within 1 hour of the final 

rTMS session vs. long-term: ≥ 4 weeks post-rTMS), number of rTMS sessions (i.e., short vs. 

long rTMS manipulation), and the interaction between rTMS site, rTMS frequency and 

outcome measures.

Sensitivity analysis.—The process of undertaking a meta-analysis involves making 

decisions about which outcome measures to include in the analysis. We performed a 

sensitivity analysis to examine whether our results would have differed if we had included 

other secondary or exploratory cognitive measures in our estimation of effect sizes.

Risk of Bias Assessment in Individual Studies

We used the Physiotherapy Evidence Database (PEDro) scale (de Morton, 2009, Maher, et 

al., 2003) to quantify the quality of included studies. The PEDro scale scored 11 items 

(Supplementary Table 1) as either present or absent. The final score is the number of positive 

answers on all questions. We considered a PEDro score of 11 to represent an excellent-

quality study, a score between 8 and 10 a good-quality study, a score of 6 and 7 a fair-quality 

study, and a score of ≤ 5 a low-quality study (Franssen, et al., 2014).

Risk of Bias Assessment across Studies

We utilized the Grading of Recommendations, Assessment, Development and Evaluation 

(GRADE) approach to assess the quality of evidence (Atkins, et al., 2004). Four levels of 

quality of evidence are specified: high quality, moderate quality, low quality, and very low 

quality. A high level of evidence is initially assumed, and subsequently downgraded for 

meeting any of the following criteria (O’Connell, et al., 2014):

• Risk of bias: downgrade once if less than 75% of included studies are excellent 

or good quality.

• Heterogeneity: downgrade once if heterogeneity between the included studies is 

significant and the I2 value is greater than 40%.

• Indirectness: downgrade once if more than 50% of the participants were outside 

the target group.

• Imprecision: downgrade once if fewer than 400 participants (Guyatt, et al., 

2011).
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• Publication/selection bias: downgrade once if the publication/selection bias is 

significant.

RESULTS

Search Results

Our initial search of all databases retrieved 124 studies and 1 additional article was 

identified from previous reviews (Figure 1). After rejecting articles based off the contents of 

the title and abstract, the full texts of 28 articles were obtained for further examination. Of 

these, 15 studies were excluded (see Supplementary Table 1). The remaining 13 studies 

(Ahmed, et al., 2012, Anderkova, et al., 2015, Cotelli, et al., 2011, Cotelli, et al., 2008, 

Drumond Marra, et al., 2015, Eliasova, et al., 2014, Koch, et al., 2018, Padala, et al., 2018, 

Rutherford, et al., 2015, Sole-Padulles, et al., 2006, Turriziani, et al., 2012, Wu, et al., 2015, 

Zhao, et al., 2017) that met the inclusion criteria were included for this meta-analysis. 

Among the 13 included studies, Cotelli et al. (2008) separately reported statistics from mild 

AD and moderate-to-severe AD, and Ahmed et al. (2012) distinctly described statistics from 

independent subgroups of AD patients who received rTMS with different protocols (i.e., 

inhibitory or excitatory). Therefore, those data (Ahmed, et al., 2012, Cotelli, et al., 2008) 

were included as multiple independent units in the meta-analysis. We only needed to request 

additional data from one group of authors to calculate effect sizes for the sensitivity analysis. 

The authors responded to our request within 10 days. Thus, no study was excluded due to 

the lack of data required for the effect size estimation

Study Characteristics

The 13 eligible studies included 293 participants (age range = 50–87 years, 45% males). The 

total effect size (pooled across all parameters) of rTMS on cognitive performance was 0.77 

(95% CI = [0.57, 0.97]), indicating a medium-to-large effect size favoring active rTMS over 

sham rTMS (z = 7.69, p < 0.0001). The main characteristics of the included studies are 

described in Tables 1, 2, 3, and the distribution of effect sizes is illustrated in Figure 2.

Heterogeneity between the included studies did not exceed that expected by chance, Q = 

14.55, df(Q) = 16, p = 0.56, I2 = 0.00, which indicate that the results across the included 

studies were statistically homogeneous. Publication bias was evaluated using Egger’s Test of 

Asymmetry and Orwin’s fail-safe N approach. Egger’s Test did not reveal significant 

asymmetry across included studies (intercept = 0.76, df = 15, t = 1.08, two-tailed p = 0.30, 

Supplementary Figure 1). Orwin’s fail-safe N analysis showed that 239 studies with a mean 

effect size of 0 would be needed to offset the conclusion that we are able to draw from the 

13 studies included in this analysis (i.e., to bring p-value greater than 0.05). This suggests 

that our findings are robust, and it reduces concerns of potential publication bias.

Subgroup Analyses

Patient population.—Six studies reported rTMS effects in AD (Ahmed, et al., 2012, 

Cotelli, et al., 2011, Cotelli, et al., 2008, Rutherford, et al., 2015, Wu, et al., 2015, Zhao, et 

al., 2017), 5 studies presented rTMS efficacy in MCI (Drumond Marra, et al., 2015, Koch, et 

al., 2018, Padala, et al., 2018, Sole-Padulles, et al., 2006, Turriziani, et al., 2012), and 2 
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studies included data on both AD and MCI (Anderkova, et al., 2015, Eliasova, et al., 2014) 

(Table 1). Our subgroup analysis revealed that the effect sizes of rTMS estimated from both 

MCI (SMD = 0.91, p < 0.0001) and AD (SMD = 0.75, p < 0.0001) were significant.

Stimulation site x frequency x outcome measures.—For the stimulation site, 9 

studies stimulated left, right, or bilateral DLPFC, 2 studies targeted the right inferior frontal 

gyrus (IFG), and the remaining 2 studies stimulated the temporo-parietal regions (Table 2). 

Pertaining to the stimulation frequency, the majority of included studies (12/13) used high-

frequency (≥ 5 Hz) rTMS protocols, while only 2 studies employed low-frequency (≤ 1 Hz) 

rTMS protocols (Table 2). Regarding the outcome measures, memory, executive, language, 

and general cognitive functions have been included for the assessments of the rTMS effects. 

Please see Table 3 for a complete list of neuropsychological tests that were administered in 

each study, and the respective time points at which each was assessed.

To parse the effectiveness of various combinations of rTMS parameters on different 

cognitive domains, we ran Stimulation site x frequency x outcome measures subgroup 

analyses across the included studies. The estimated effect sizes and p values are illustrated in 

Figure 3. First, the effects of rTMS at the DLPFC were lateralized. High-frequency rTMS 

over the left DLPFC (SMD = 0.68, p < 0.005) and low-frequency rTMS at the right DLPFC 

(SMD = 1.53, p < 0.005) significantly improved memory functions. Second, high-frequency 

rTMS targeting the right IFG significantly improved executive functions. Additionally, the 

effects of high-frequency rTMS over the left DLPFC on language (SMD = 1.33, p = 0.06) 

and general cognitive function (SMD = 1.24, p = 0.06) were marginally significant. 

Although the effects of high-frequency rTMS at bilateral DLPFC on memory and general 

cognitive function were not significant, it should be noted that all of these effect sizes were 

greater than 0.8, which may be indicative of a large effect of active rTMS over the sham-

condition. Future studies are warranted to further investigate these rTMS protocols in 

patients with AD or MCI.

Number of rTMS sessions (i.e., short vs. long rTMS manipulation).—Most of the 

included studies administered rTMS for multiple sessions on consecutive days, but 5 studies 

only consisted of a single rTMS session (Anderkova, et al., 2015, Cotelli, et al., 2008, 

Eliasova, et al., 2014, Sole-Padulles, et al., 2006, Turriziani, et al., 2012) (Table 2). Our 

subgroup analysis showed that both single-session rTMS (SMD = 0.83, p < 0.001) and 

multi-session rTMS (SMD = 0.72, p < 0.001) improved cognitive functions.

Timing of outcome measurements.—All 13 studies assessed cognitive functions 

acutely (≤ 1 hour after the final rTMS session), and 3 studies additionally reported follow-up 

behavioral assessments as a long-term outcome measure (≥ 4 weeks) (Ahmed, et al., 2012, 

Drumond Marra, et al., 2015, Zhao, et al., 2017). The acute assessment was administered 

within 1 hour of the final rTMS session, while the chronic assessment occurred either at 4 

weeks, 6 weeks, or 12 weeks after the final rTMS session (Table 3). Results of our subgroup 

analysis revealed that both short-term (SMD = 0.71, p < 0.0001) and long-term rTMS effects 

on cognitive functions (SMD = 0.71, p < 0.0001) were significant, suggesting that with 5–30 

consecutive rTMS sessions, the effects could last 4–12 weeks.
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Sensitivity Analysis

We included secondary or exploratory cognitive measures from 8 studies (Anderkova, et al., 

2015, Cotelli, et al., 2011, Drumond Marra, et al., 2015, Eliasova, et al., 2014, Koch, et al., 

2018, Padala, et al., 2018, Rutherford, et al., 2015, Zhao, et al., 2017) into our meta-analysis 

to examine whether the results would change (Table 3). The pooled rTMS effect remained 

medium-to-large and significant (SMD = 0.65, 95% CI = [0.46, 0.84], z = 6.61, p < .0001), 

as did the pooled effect from the primary cognitive measures (SMD = 0.77, 95% CI = [0.57, 

0.97], z = 7.69, p < .0001).

Adverse Events

No incidents of seizure were reported in this patient population across the 13 studies. Eight 

studies further assessed the incidence of other minor adverse responses related to the 

application of rTMS. Among them, patients in the Ahmed et al. (2012) and Cotelli et al. 

(2011) studies did not report any adverse events during or after rTMS sessions. The minor 

adverse events reported due to rTMS are summarized in Supplementary Table 2.

Risk of Bias Assessment in Individual Studies

The risk of bias assessment for all included studies is summarized in Supplementary Table 1. 

Overall, our analysis indicates that 2 studies were of excellent methodological quality 

(PEDro scale 11/11), 10 studies were of good methodological quality (8– 10/11), and one 

study was of fair methodological quality (7/11).

Risk of Bias Assessment across Studies

Using the GRADE criteria, we characterized the quality of evidence presented in this meta-

analysis as moderate quality. The initial presumption for a high level of evidence was 

downgraded once because fewer than 400 participants were included in this meta-analysis. 

Despite this imperfection, our meta-analysis exhibited low risk of bias, adequate 

homogeneity, directedness (i.e., all participants were patients with AD or MCI), and it is free 

from publication/selection bias across included studies.

DISCUSSION

Overall, our meta-analysis provides evidence supporting a beneficial effect of rTMS on 

cognitive functions in both patients with MCI and AD. Subgroup analyses indicate that 1) 

high-frequency rTMS over the left DLPFC and low-frequency rTMS at the right DLPFC 

significantly improved memory functions; 2) high-frequency rTMS targeting the right IFG 

significantly enhanced executive performance; and 3) the effects of 5–30 consecutive rTMS 

sessions could last for 4–12 weeks.

What are the potential mechanisms underlying the rTMS effects on cognitive functions?

Previous animal models of dementia indicate that both high-frequency (Ma, et al., 2017, 

Wang, et al., 2010, Zhang, et al., 2015) and low-frequency (Huang, et al., 2017, Wang, et al., 

2010, Yang, et al., 2015, Zhang, et al., 2018) rTMS (daily sessions for 2–4 weeks) can 

significantly improve hippocampal dependent functions of learning and memory. These 

Chou et al. Page 8

Neurobiol Aging. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



findings are congruent with those presented in this meta-analysis, and a closer examination 

of such experimental models may yield additional insights as to the underlying mechanisms 

of rTMS. Here, we will explore the multifaceted neurobiological effects of rTMS that may 

be interacting in some capacity to influence cognitive functions.

Numerous in vitro and in vivo experimental models provide evidence that rTMS can 

increase long-term potentiation (LTP) (Thickbroom, 2007). Of particular relevance, this has 

been documented in various murine models of dementia where rTMS rescues LTP deficits 

(Tan, et al., 2013, Wang, et al., 2015, Zhang, et al., 2015, Zhen, et al., 2017). These 

improvements in neural plasticity are observed in conjunction with improved performance 

on hippocampal dependent measures of spatial cognition (Huang, et al., 2017, Ma, et al., 

2014, Tan, et al., 2013, Wang, et al., 2015). Further, in murine models of AD, the increase in 

LTP and improvement in spatial cognition following rTMS are observed concomitantly with 

reduced amyloid-β load (Huang, et al., 2017, Tan, et al., 2013, Wang, et al., 2015). Reported 

mechanisms to explain this reduction in pathology by rTMS include 1) the reduction of 

amyloid precursor protein (APP) (Huang, et al., 2017), and 2) facilitation of the large-

conductance calcium-activated potassium channel via increased expression of the Homer1a 

scaffold protein (Wang, et al., 2015).

On more granular level, there are numerous rTMS induced effects that likely mediate this 

enhanced synaptic function. Numerous studies, for example, report that hippocampal 

expression of brain derived neurotrophic factor (BDNF) and vascular endothelial growth 

factor (VEGF) are increased following rTMS (Gersner, et al., 2011, Ma, et al., 2014, Muller, 

et al., 2000, Shang, et al., 2016, Zhang, et al., 2015). In addition to these neurotrophic 

factors, rTMS reportedly increases expression of N-methyl-D-aspartate (NMDA) receptors 

and other proteins that facilitate synaptic plasticity (e.g., synaptophysin, post-synaptic 

density protein-95, cyclin dependent kinase 5, GAP43) (Etievant, et al., 2015, Kole, et al., 

1999, Ma, et al., 2017, Ma, et al., 2014, Shang, et al., 2016, Wang, et al., 2010, Yang, et al., 

2015, Zhang, et al., 2015).

Relatedly, there are reports of rTMS increases hippocampal neurogenesis in the dentate 

gyrus (Ueyama, et al., 2011), which plays a critical role in pattern separation (Clelland, et 

al., 2009). In addition to the neurotrophic mediators listed above, rTMS may promote 

neurogenesis via the increased expression of cholecystokinin (CCK) (Muller, et al., 2000). 

In addition to its neuroprotective effects in rodent models of AD (Sugaya, et al., 1992), CCK 

has been shown to increase cell proliferation and neurogenesis in the dentate gyrus (Reisi, et 

al., 2015). CCK is the most abundant peptide in the mammalian brain, and there is a 

dipropionate density of CCK receptors found in the hippocampus (Zarbin, et al., 1983). In 

numerous rodent models, increased expression of CCK corresponds with increased 

performance on hippocampal dependent tasks of learning and memory (Croll, et al., 1999, 

Reisi, et al., 2015, Sebret, et al., 1999, Taghzouti, et al., 1999). In a recent human study from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, CCK concentration in the 

cerebrospinal fluid was identified as a novel biomarker that was associated with both 

cognitive status and gray matter volume in key anatomical regions associated with AD 

pathology (Plagman, et al., 2019).
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These microscopic alterations from rTMS may also interact to produce network level 

changes in brain function that are more readily detected in human trials. As an example, 

consider the findings reported by Solé-Padullés and colleagues in their clinical trial of AD 

patients that utilized task-based fMRI before and after rTMS. They report that improvements 

in associative memory following rTMS corresponded with compensatory recruitment of 

additional neural networks (Sole-Padulles, et al., 2006). Similar compensatory brain activity 

has been previously documented in older adults who retain high cognitive functions as they 

age (Bangen, et al., 2012, Cabeza, et al., 2002).

Why does the DLPFC rTMS enhance memory functions in AD and MCI?

The DLPFC is a core region involved in executive functions, such as working memory and 

cognitive flexibility (Blumenfeld, et al., 2011, Blumenfeld and Ranganath, 2007). Previous 

research reported that patients with MCI and AD have executive function deficits (Baudic, et 

al., 2006, Chen, et al., 1998, Guarino, et al., 2018, Guarino, et al., 2019) and the 

impairments in executive functions are considered to exacerbate memory deficits in this 

population (Buckner, 2004, Zheng, et al., 2012). Our subgroup analyses provide evidence 

showing that the DLPFC rTMS significantly improved memory functions in patients with 

MCI or AD. One possible explanation for this effect is that the DLPFC may contribute to 

long-term memory formation through its interaction with regions within the medial temporal 

network (e.g., hippocampus) during memory encoding (Blumenfeld and Ranganath, 2006, 

Murray and Ranganath, 2007, Ranganath, et al., 2005, Simons and Spiers, 2003, Yuan, et al., 

2016) and retrieval (Achim and Lepage, 2005, Balconi and Ferrari, 2012, Balconi and 

Ferrari, 2013, Manenti, et al., 2010, Simons and Spiers, 2003). Consistent with this idea, 

studies of patients with focal prefrontal lesion have reported that damage to the DLPFC can 

disrupt recognition memory (Duarte, et al., 2005, Gershberg and Shimamura, 1995); activity 

in the DLPFC during the early stage of working memory maintenance was predictive of 

subsequent long-term memory (Ranganath, et al., 2005); and disruption of working memory 

processing resulted in impaired long-term memory formation (Ranganath, et al., 2005). 

Collectively, previous behavioral and imaging studies suggest that successful long-term 

memory may depend on effective control of information in working memory (Blumenfeld 

and Ranganath, 2007), and this relationship might be mediated by the DLPFC (Ranganath, 

et al., 2005, Yuan, et al., 2016).

Additionally, our subgroup analyses revealed that both high-frequency rTMS over the left 

DLPFC and low-frequency rTMS at the right DLPFC significantly improved memory 

functions in patients with MCI or AD. These two rTMS protocols have also been examined 

in major depressive disorder (MDD), and previous meta-analyses in MDD show that these 

two rTMS protocols exhibited similarly lateralized clinical efficacy on response rate and 

remission rate (Cao, et al., 2018, Chen, et al., 2013). Previous brain imaging studies in MDD 

found reduced cerebral blood flow and metabolism in the left DLPFC and hypermetabolism 

in the right DLPFC in acute MDD (Mayberg, 2003, Phillips, et al., 2003). Thus, it is 

postulated that patients with MDD benefit from high-frequency rTMS over the left DLPFC 

due to increasing cortical activity and benefit from low-frequency rTMS over the right 

DLPFC because the cortical activity is suppressed (Avery, et al., 2006, Cao, et al., 2018, 

Chen, et al., 2013, George, et al., 2010). Currently, it is not clear whether patients with MCI 
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or AD exhibit similar prefrontal asymmetry as patients with MDD do. Furthermore, 

functional brain imaging data examining how each rTMS protocol modulates brain activity 

of the DLPFC and other connected regions in MCI and AD is very limited. Future studies 

that integrate rTMS and brain imaging techniques will be needed to understand the 

prefrontal functions in MCI and AD, and better explain the DLPFC rTMS effects.

Notably, the same rTMS protocols over the respective DLPFC targets elicit positive clinical 

outcomes in both patients with depression and those with MCI/AD. As an additional 

consideration, this might also be suggestive that the reported rTMS influence on cognition 

may be an indirect consequence of improved affect. Scholars have long discussed the 

appreciable interaction and marginal phenomenological distinction between affect and 

cognition (Duncan and Barrett, 2007). The two behavioral phenotypes are increasingly 

intertwined with age (Crocco, et al., 2010), which may speak to enmeshed neurobiological 

mechanisms (e.g., inflammation) or it may be driven by a bidirectional interaction of the 

phenomenology of the conditions. Only a single study included in our analysis reported 

outcome measures pertaining to both affect and cognition (Ahmed, et al., 2012). 

Interestingly, these authors report that the cohort with appreciable improvement in cognition 

also exhibited a concomitant decrease in depressive symptoms (Ahmed, et al., 2012). This 

possibility is met with conflicting evidence in the literature. Generally, cognitive 

improvements are not observed in clinical trials applying rTMS for depression (Martin, et 

al., 2017). However, this potential effect is likely influenced by the baseline cognitive status 

of patients receiving DLPFC rTMS. As such, the association between neurocognitive and 

mood improvement following rTMS may be more likely to emerge in populations where 

baseline cognition is more vulnerable (Ilieva, et al., 2018).

Limitations and future directions

Regarding the limitations of the present meta-analysis, our results could be constrained by 

insufficient number of patients (i.e., less than 400 patients with MCI or AD) included in this 

meta-analysis. In addition, very few studies have stimulated brain regions other than the 

DLPFC, therefore, the non-significant rTMS effects of other brain regions should be 

interpreted with caution. Future studies should focus on establishing a more precise 

relationship between stimulation site, rTMS frequency, and function of cognitive domains 

enhanced by rTMS; as well as 2) establishing a procedure to tailor the rTMS parameters for 

each individual patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Repetitive TMS is a promising tool to enhance cognitive functions in AD and 

MCI

• High-frequency L-DLPFC and low-frequency R-DLPFC rTMS may improve 

memory function

• High-frequency R-IFG rTMS may enhance executive performance

• rTMS effects on cognition are documented at both acute and chronic time 

points

• Chronic effects of consecutive rTMS sessions reportedly persist at 12 weeks
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Figure 1. 
Flow diagram showing the search and selection procedure that was used for this meta-

analysis. Diagram adapted from Moher et al.(Moher, et al., 2009).
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Figure 2. 
Forest plot. Individual and pooled rTMS effect sizes (SMDs) for cognitive function in 

patients with MCI or AD. The size of the squares increases with increasing sample size. 

Cotelli et al. (2008) reported statistics from mild AD (Cotelli et al., 2008a) and moderate-to-

severe AD (Cotelli et al., 2008b) separately, and Ahmed et al. (2012) described statistics 

from 4 groups (Ahmed et al., 2012a = high-frequency rTMS in mild AD; Ahmed et al., 

2012b = high-frequency rTMS in severe AD; Ahmed et al., 2012c = low-frequency rTMS in 

mild AD; Ahmed et al., 2012d = low-frequency rTMS in severe AD;), therefore, those data 

were included as multiple independent units in the meta-analysis.
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Figure 3. 
rTMS effect sizes for various combinations of stimulation site, frequency, and outcome 

measures. DLPFC = dorsolateral prefrontal cortex; ES = effect size; High-F = high-

frequency rTMS; IFG = inferior frontal gyrus; Low-F = low-frequency rTMS.
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