

HHS Public Access

Author manuscript *Neurobiol Aging*. Author manuscript; available in PMC 2021 February 01.

Published in final edited form as:

Neurobiol Aging. 2020 February ; 86: 1-10. doi:10.1016/j.neurobiolaging.2019.08.020.

A Systematic Review and Meta-Analysis of rTMS Effects on Cognitive Enhancement in Mild Cognitive Impairment and Alzheimer's Disease

Ying-hui Chou^{a,b,*}, Viet Ton That^a, Mark Sundman^a

^aBrain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, USA

^bEverlyn F McKnight Brain Institute, Arizona Center on Aging, and BIO5 Institute, University of Arizona, Tucson, USA

Abstract

Repetitive transcranial magnetic stimulation (rTMS), a non-invasive brain stimulation technique, has emerged as a promising treatment for mild cognitive impairment (MCI) and Alzheimer's disease (AD). Currently, however, the effectiveness of this therapy is unclear due to the low statistical power and heterogeneity of previous trials. The purpose of the meta-analysis was to systematically characterize the effectiveness of various combinations of rTMS parameters on different cognitive domains in patients with MCI and AD. Thirteen studies comprising 293 patients with MCI or AD were included in this analysis. Random effects analysis revealed an overall medium-to-large effect size (0.77) favoring active rTMS over sham rTMS in the improvement of cognitive functions. Subgroup analyses revealed that 1) high-frequency rTMS over the left dorsolateral prefrontal cortex (DLPFC) and low-frequency rTMS at the right DLPFC significantly improved memory functions; 2) high-frequency rTMS targeting the right inferior frontal gyrus significantly enhanced executive performance; and 3) the effects of 5–30 consecutive rTMS sessions could last for 4–12 weeks. Potential mechanisms of rTMS effects on cognitive functions are discussed.

Keywords

mild cognitive impairment; Alzheimer's disease; transcranial magnetic stimulation; plasticity; dorsolateral prefrontal cortex; intervention; memory; treatment; therapy; cognition

^{*}Address correspondence to: Ying-hui Chou, Sc.D., Brain Imaging and Transcranial Magnetic Stimulation Laboratory Department of Psychology, University of Arizona Ph: 520-621-7447, FAX: 520-621-9306, yinghuichou@email.arizona.edu.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

INTRODUCTION

Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique that is increasingly utilized for a growing number of research and clinical applications. To perform TMS, a magnetic field that reaches a strength of up to 2 Tesla is rapidly generated in <1 ms. Typically, this transient magnetic field is focally applied with a Figure-of-Eight coil that is carefully placed on the surface of the scalp over a targeted stimulation site. Leveraging Faraday's principle of electromagnetic induction, this magnetic field penetrates the skull and generates an electric current in the more conductive brain tissue in a direction that is perpendicular to the applied magnetic field (Barker, et al., 1985, Hallett, 2007). If this orthogonal electrical current is strong enough to surpass a physiological threshold, it can depolarize neurons in the targeted cortical tissue. Due to the nature of the exponentially decaying electromagnetic field, the penetration depth is limited to 2–3 centimeters. Thus, only superficial brain tissue can be directly stimulated by TMS, but this excitation can be propagated to distal targets through circuits that are structurally and/or functionally connected to the stimulation site (Chou, et al., 2015b, Liston, et al., 2014, Wang, et al., 2014). In the corticospinal system, for example, when the motor cortex is stimulated with a suprathreshold TMS pulse, this direct excitation evokes a series of descending corticospinal volleys in the form of Direct (D-) and Indirect (I-) waves, which ultimately elicits a motor response in the corresponding limb (Bestmann and Krakauer, 2015).

Contrary to single-pulse TMS, patterned repetitive TMS (rTMS) can produce long-lasting effects on neural activity and behavior beyond the stimulation period (Chou, et al., 2015a, Fitzgerald, et al., 2006). Careful manipulation of the parameters comprising these patterned rTMS pulse trains can induce neuroplastic changes that resemble either Long-Term Potentiation (LTP) or Depression (LTD) (Chen, et al., 1997, Pascual-Leone, et al., 1994). Early studies targeting the motor cortex helped elucidate which rTMS parameters promote particular responses and their neurophysiological underpinnings (Klomjai, et al., 2015). More recently, this ability to evoke distinct long-lasting changes in neural activity has been leveraged for therapeutic applications in neuropsychiatric disease. In 2008, for example, TMS devices were cleared for market by the Food and Drug Administration (FDA) for the clinical treatment of medication-resistant Major Depression Disorder. The specific FDA approved protocol is comprised of a high-frequency stimulation protocol, which is known to produce an excitatory LTP-like effect, over the Left Dorsolateral Prefrontal Cortex (DLFPC) (O'Reardon, et al., 2007). However, as an extension of the prefrontal asymmetry phenomenon, it has also been reported that inhibitory LTD-like low-frequency rTMS over the Right DLPFC is equally efficacious in producing anti-depressive outcomes in this patient population (Fitzgerald, et al., 2009, Sutton and Davidson, 1997). In other words, prefrontal activity in patients with MDD is abnormally imbalanced with right-sided hyperactivity and left-sided hypoactivity. Thus, distinct rTMS protocols that are known to produce opposite neurophysiological effects must be specifically applied depending on the targeted site of stimulation. This interaction between rTMS protocol and stimulation site has also been documented in the treatment of neurodegenerative disease (Chou, et al., 2015a). Accordingly, it is necessary to carefully discern the rTMS parameters when evaluating its potential efficacy in all neurologic and psychiatric conditions.

In recent years, rTMS has been closely investigated to evaluate its potential to modulate cognitive functions in AD and MCI. Here, we extend previous important reviews (Birba, et al., 2017, Cheng, et al., 2017, Dong, et al., 2018, Hsu, et al., 2015, Liao, et al., 2015, Nardone, et al., 2014) by including rTMS studies among both patients with AD or MCI to evaluate and update the efficacy of rTMS intervention compared to sham controls. Additionally, we sought to give greater attention to the methodological components of these existing studies. Considerable heterogeneity exists among the various rTMS treatment protocols that have been reported for cognitive enhancement for AD and MCI in the literature (e.g., different combinations of stimulation site, pulse frequency, stimulation intensity, number of stimuli delivered, and number of treatment sessions). A systematic and quantitative review that delineates rTMS effects based on various rTMS treatment protocols is not available. It is important to integrate these findings in a manner that accounts for this methodological heterogeneity to more accurately estimate the effects of rTMS in AD and MCI. Furthermore, we systematically characterize the effectiveness of various combinations of rTMS parameters on different cognitive domains in patients with AD and MCI. The distilled findings presented herein can be used to improve the experimental design of future rTMS clinical trials.

METHODS

Search Strategy

Our meta-analysis was conducted in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement (Moher, et al., 2009) (Figure 1). To identify studies for inclusion in this meta-analysis we searched PubMed, Web of Science, Current Contents Connect, and SciELO Citation Index through March 2019. Databases were searched using combinations of the following terms: Alzheimer's disease or mild cognitive impairment and repetitive transcranial magnetic stimulation (or rTMS or repetitive TMS). Additionally, we searched reference lists of previous reviews on rTMS for AD/MCI (Birba, et al., 2017, Cheng, et al., 2017, Dong, et al., 2018, Hsu, et al., 2015, Liao, et al., 2015, Nardone, et al., 2014) to identify additional relevant articles.

Inclusion Criteria for the Selection of Studies

We included studies that met all of the following criteria: 1) clinical population of patients previously diagnosed with AD or MCI; 2) rTMS was the only intervention being investigated; 3) cognitive functions were assayed as a behavioral outcome measure; 4) parallel or cross-over design that utilized a sham-controlled group or condition; and 5) articles written in English. Studies identified through database searches were initially screened on the basis of their title and abstract. They were subsequently excluded if it was clear from the title or abstract that the study was not relevant or did not meet the inclusion criteria (see Supplementary Table 1). If it remained unclear, the paper was assessed in its entirety. Additionally, studies were excluded if they were conference abstracts/papers.

Data Extraction

Two authors (YHC and VTT) independently performed the data extraction and any disagreements were resolved by joint discussion. Extracted data included sample size,

sample characteristics, study design, rTMS protocol, statistical data of the score of cognitive performance for effect size estimation, and timing of outcome measurements (short-term: within 1 hour of the final rTMS session or long-term: 4 weeks post-rTMS). When published data were insufficient for data analysis, the original study author(s) were contacted with requests for access to additional data.

Statistical Analysis

Effect size calculation.—We used standardized mean difference (SMD, also known as *Cohen's d*) to express the effect size of rTMS on cognitive functions. A random-effects model was used to calculate pooled effect sizes and examine whether the averaged effect size was significantly different from zero (p < 0.05, two-tailed). The mean effect was expressed as SMD with 95% confidence intervals. Generally, one effect size was derived from each study. If a study had multiple effect sizes from the same patient group (e.g., short-term and long-term rTMS effects; or different cognitive measures), we obtained one averaged effect size across multiple effect sizes within that particular study. If the effect sizes were reported from mild AD and severe AD separately within a single study or if the effect sizes were estimated from 2 independent subgroups of patients who received rTMS with different protocols, then the data were included as 2 independent units in the meta-analysis.

Due to the heterogeneity of cognitive measures included in each study, we first derived an effect size from the main outcome measures reported in each study. We then performed a sensitivity analysis that included additional secondary or exploratory cognitive measures (Please refer to the Sensitivity Analysis Section below). The cognitive tasks used for the estimation of effect size (i.e., the main outcome measures reported in each study) included the mini-mental status evaluation (MMSE), AD assessment scale cognitive subscale (ADAS-cog), Rey auditory verbal learning test (RAVLT), Rivermead behavioral memory test (RBMT), Battery for analysis of aphasic deficits, trail making task, Stroop color-word task, word-image association task, recognition memory task, and action naming and object naming task.

Additionally, although our overall effect was estimated across diagnosis (AD and MCI), number of rTMS sessions (i.e., short and long rTMS manipulation), rTMS site, rTMS frequency (i.e., low frequency: 1 Hz and high frequency: 5 Hz), cognitive measures, and timing of outcome measurements (i.e., short-term: within 1 hour of the final rTMS session and long-term: 4 weeks post-rTMS), these potential rTMS moderating effects were investigated in the subgroup analyses (Please refer to the Subgroup Analyses Section below).

Heterogeneity analysis.—We used the Q statistics and the I^2 index to assess heterogeneity. A probability value less than 0.05 and I^2 greater than 40% is indicative of heterogeneity between included studies as it exceeds what is expected by chance (Higgins, et al., 2003).

Publication or selection bias.—Publication/selection bias was evaluated with Egger's Test of Asymmetry (Egger, et al., 1997) and Orwin's *fail-safe N* approach (Borenstein, et al.,

2009). In the absence of publication/selection bias, effect sizes are symmetrically distributed around the overall average effect size, since the sampling error is random. Egger's test evaluated whether the amount of asymmetry is significant. In addition, studies that demonstrated lack of benefit might not have been submitted and/or accepted for publication. Therefore, we used the Orwin's *fail-safe* N to estimate the number of missing studies (with a mean effect size of 0) that would need to be incorporated in our meta-analysis to make the summary effect become trivial.

Subgroup analyses.—Our pre-specified categories for subgroup analyses included diagnosis (AD and MCI), rTMS site, rTMS frequency (low: 1 Hz and high: 5 Hz), cognitive measures, timing of outcome measurements (short-term: within 1 hour of the final rTMS session vs. long-term: 4 weeks post-rTMS), number of rTMS sessions (i.e., short vs. long rTMS manipulation), and the interaction between rTMS site, rTMS frequency and outcome measures.

Sensitivity analysis.—The process of undertaking a meta-analysis involves making decisions about which outcome measures to include in the analysis. We performed a sensitivity analysis to examine whether our results would have differed if we had included other secondary or exploratory cognitive measures in our estimation of effect sizes.

Risk of Bias Assessment in Individual Studies

We used the Physiotherapy Evidence Database (PEDro) scale (de Morton, 2009, Maher, et al., 2003) to quantify the quality of included studies. The PEDro scale scored 11 items (Supplementary Table 1) as either present or absent. The final score is the number of positive answers on all questions. We considered a PEDro score of 11 to represent an excellent-quality study, a score between 8 and 10 a good-quality study, a score of 6 and 7 a fair-quality study, and a score of 5 a low-quality study (Franssen, et al., 2014).

Risk of Bias Assessment across Studies

We utilized the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) approach to assess the quality of evidence (Atkins, et al., 2004). Four levels of quality of evidence are specified: high quality, moderate quality, low quality, and very low quality. A high level of evidence is initially assumed, and subsequently downgraded for meeting any of the following criteria (O'Connell, et al., 2014):

- Risk of bias: downgrade once if less than 75% of included studies are excellent or good quality.
- Heterogeneity: downgrade once if heterogeneity between the included studies is significant and the I^2 value is greater than 40%.
- Indirectness: downgrade once if more than 50% of the participants were outside the target group.
- Imprecision: downgrade once if fewer than 400 participants (Guyatt, et al., 2011).

 Publication/selection bias: downgrade once if the publication/selection bias is significant.

RESULTS

Search Results

Our initial search of all databases retrieved 124 studies and 1 additional article was identified from previous reviews (Figure 1). After rejecting articles based off the contents of the title and abstract, the full texts of 28 articles were obtained for further examination. Of these, 15 studies were excluded (see Supplementary Table 1). The remaining 13 studies (Ahmed, et al., 2012, Anderkova, et al., 2015, Cotelli, et al., 2011, Cotelli, et al., 2008, Drumond Marra, et al., 2015, Eliasova, et al., 2014, Koch, et al., 2018, Padala, et al., 2018, Rutherford, et al., 2015, Sole-Padulles, et al., 2006, Turriziani, et al., 2012, Wu, et al., 2015, Zhao, et al., 2017) that met the inclusion criteria were included for this meta-analysis. Among the 13 included studies, Cotelli et al. (2008) separately reported statistics from mild AD and moderate-to-severe AD, and Ahmed et al. (2012) distinctly described statistics from independent subgroups of AD patients who received rTMS with different protocols (i.e., inhibitory or excitatory). Therefore, those data (Ahmed, et al., 2012, Cotelli, et al., 2008) were included as multiple independent units in the meta-analysis. We only needed to request additional data from one group of authors to calculate effect sizes for the sensitivity analysis. The authors responded to our request within 10 days. Thus, no study was excluded due to the lack of data required for the effect size estimation

Study Characteristics

The 13 eligible studies included 293 participants (age range = 50–87 years, 45% males). The total effect size (pooled across all parameters) of rTMS on cognitive performance was 0.77 (95% CI = [0.57, 0.97]), indicating a medium-to-large effect size favoring active rTMS over sham rTMS (z = 7.69, p < 0.0001). The main characteristics of the included studies are described in Tables 1, 2, 3, and the distribution of effect sizes is illustrated in Figure 2.

Heterogeneity between the included studies did not exceed that expected by chance, Q = 14.55, df(Q) = 16, p = 0.56, $I^2 = 0.00$, which indicate that the results across the included studies were statistically homogeneous. Publication bias was evaluated using Egger's Test of Asymmetry and Orwin's *fail-safe* N approach. Egger's Test did not reveal significant asymmetry across included studies (intercept = 0.76, df = 15, t = 1.08, two-tailed p = 0.30, Supplementary Figure 1). Orwin's *fail-safe* N analysis showed that 239 studies with a mean effect size of 0 would be needed to offset the conclusion that we are able to draw from the 13 studies included in this analysis (i.e., to bring *p*-value greater than 0.05). This suggests that our findings are robust, and it reduces concerns of potential publication bias.

Subgroup Analyses

Patient population.—Six studies reported rTMS effects in AD (Ahmed, et al., 2012, Cotelli, et al., 2011, Cotelli, et al., 2008, Rutherford, et al., 2015, Wu, et al., 2015, Zhao, et al., 2017), 5 studies presented rTMS efficacy in MCI (Drumond Marra, et al., 2015, Koch, et al., 2018, Padala, et al., 2018, Sole-Padulles, et al., 2006, Turriziani, et al., 2012), and 2

studies included data on both AD and MCI (Anderkova, et al., 2015, Eliasova, et al., 2014) (Table 1). Our subgroup analysis revealed that the effect sizes of rTMS estimated from both MCI (SMD = 0.91, p < 0.0001) and AD (SMD = 0.75, p < 0.0001) were significant.

Stimulation site x frequency x outcome measures.—For the *stimulation site*, 9 studies stimulated left, right, or bilateral DLPFC, 2 studies targeted the right inferior frontal gyrus (IFG), and the remaining 2 studies stimulated the temporo-parietal regions (Table 2). Pertaining to the *stimulation frequency*, the majority of included studies (12/13) used high-frequency (5 Hz) rTMS protocols, while only 2 studies employed low-frequency (1 Hz) rTMS protocols (Table 2). Regarding the *outcome measures*, memory, executive, language, and general cognitive functions have been included for the assessments of the rTMS effects. Please see Table 3 for a complete list of neuropsychological tests that were administered in each study, and the respective time points at which each was assessed.

To parse the effectiveness of various combinations of rTMS parameters on different cognitive domains, we ran *Stimulation site x frequency x outcome measures* subgroup analyses across the included studies. The estimated effect sizes and *p* values are illustrated in Figure 3. First, the effects of rTMS at the DLPFC were lateralized. High-frequency rTMS over the left DLPFC (SMD = 0.68, p < 0.005) and low-frequency rTMS at the right DLPFC (SMD = 1.53, p < 0.005) significantly improved memory functions. Second, high-frequency rTMS targeting the right IFG significantly improved executive functions. Additionally, the effects of high-frequency rTMS over the left DLPFC on language (SMD = 1.33, p = 0.06) and general cognitive function (SMD = 1.24, p = 0.06) were marginally significant. Although the effects of high-frequency rTMS at bilateral DLPFC on memory and general cognitive function were not significant, it should be noted that all of these effect sizes were greater than 0.8, which may be indicative of a large effect of active rTMS over the sham-condition. Future studies are warranted to further investigate these rTMS protocols in patients with AD or MCI.

Number of rTMS sessions (i.e., short vs. long rTMS manipulation).—Most of the included studies administered rTMS for multiple sessions on consecutive days, but 5 studies only consisted of a single rTMS session (Anderkova, et al., 2015, Cotelli, et al., 2008, Eliasova, et al., 2014, Sole-Padulles, et al., 2006, Turriziani, et al., 2012) (Table 2). Our subgroup analysis showed that both single-session rTMS (SMD = 0.83, p < 0.001) and multi-session rTMS (SMD = 0.72, p < 0.001) improved cognitive functions.

Timing of outcome measurements.—All 13 studies assessed cognitive functions acutely (1 hour after the final rTMS session), and 3 studies additionally reported follow-up behavioral assessments as a long-term outcome measure (4 weeks) (Ahmed, et al., 2012, Drumond Marra, et al., 2015, Zhao, et al., 2017). The acute assessment was administered within 1 hour of the final rTMS session, while the chronic assessment occurred either at 4 weeks, 6 weeks, or 12 weeks after the final rTMS session (Table 3). Results of our subgroup analysis revealed that both short-term (SMD = 0.71, p < 0.0001) and long-term rTMS effects on cognitive functions (SMD = 0.71, p < 0.0001) were significant, suggesting that with 5–30 consecutive rTMS sessions, the effects could last 4–12 weeks.

Sensitivity Analysis

We included secondary or exploratory cognitive measures from 8 studies (Anderkova, et al., 2015, Cotelli, et al., 2011, Drumond Marra, et al., 2015, Eliasova, et al., 2014, Koch, et al., 2018, Padala, et al., 2018, Rutherford, et al., 2015, Zhao, et al., 2017) into our meta-analysis to examine whether the results would change (Table 3). The pooled rTMS effect remained medium-to-large and significant (SMD = 0.65, 95% CI = [0.46, 0.84], z = 6.61, p < .0001), as did the pooled effect from the primary cognitive measures (SMD = 0.77, 95% CI = [0.57, 0.97], z = 7.69, p < .0001).

Adverse Events

No incidents of seizure were reported in this patient population across the 13 studies. Eight studies further assessed the incidence of other minor adverse responses related to the application of rTMS. Among them, patients in the Ahmed et al. (2012) and Cotelli et al. (2011) studies did not report any adverse events during or after rTMS sessions. The minor adverse events reported due to rTMS are summarized in Supplementary Table 2.

Risk of Bias Assessment in Individual Studies

The risk of bias assessment for all included studies is summarized in Supplementary Table 1. Overall, our analysis indicates that 2 studies were of excellent methodological quality (PEDro scale 11/11), 10 studies were of good methodological quality (8–10/11), and one study was of fair methodological quality (7/11).

Risk of Bias Assessment across Studies

Using the GRADE criteria, we characterized the quality of evidence presented in this metaanalysis as *moderate* quality. The initial presumption for a high level of evidence was downgraded once because fewer than 400 participants were included in this meta-analysis. Despite this imperfection, our meta-analysis exhibited low risk of bias, adequate homogeneity, directedness (i.e., all participants were patients with AD or MCI), and it is free from publication/selection bias across included studies.

DISCUSSION

Overall, our meta-analysis provides evidence supporting a beneficial effect of rTMS on cognitive functions in both patients with MCI and AD. Subgroup analyses indicate that 1) high-frequency rTMS over the left DLPFC and low-frequency rTMS at the right DLPFC significantly improved memory functions; 2) high-frequency rTMS targeting the right IFG significantly enhanced executive performance; and 3) the effects of 5–30 consecutive rTMS sessions could last for 4–12 weeks.

What are the potential mechanisms underlying the rTMS effects on cognitive functions?

Previous animal models of dementia indicate that both high-frequency (Ma, et al., 2017, Wang, et al., 2010, Zhang, et al., 2015) and low-frequency (Huang, et al., 2017, Wang, et al., 2010, Yang, et al., 2015, Zhang, et al., 2018) rTMS (daily sessions for 2–4 weeks) can significantly improve hippocampal dependent functions of learning and memory. These

findings are congruent with those presented in this meta-analysis, and a closer examination of such experimental models may yield additional insights as to the underlying mechanisms of rTMS. Here, we will explore the multifaceted neurobiological effects of rTMS that may be interacting in some capacity to influence cognitive functions.

Numerous in vitro and in vivo experimental models provide evidence that rTMS can increase long-term potentiation (LTP) (Thickbroom, 2007). Of particular relevance, this has been documented in various murine models of dementia where rTMS rescues LTP deficits (Tan, et al., 2013, Wang, et al., 2015, Zhang, et al., 2015, Zhen, et al., 2017). These improvements in neural plasticity are observed in conjunction with improved performance on hippocampal dependent measures of spatial cognition (Huang, et al., 2017, Ma, et al., 2014, Tan, et al., 2013, Wang, et al., 2015). Further, in murine models of AD, the increase in LTP and improvement in spatial cognition following rTMS are observed concomitantly with reduced amyloid- β load (Huang, et al., 2017, Tan, et al., 2013, Wang, et al., 2017). Reported mechanisms to explain this reduction in pathology by rTMS include 1) the reduction of amyloid precursor protein (APP) (Huang, et al., 2017), and 2) facilitation of the large-conductance calcium-activated potassium channel via increased expression of the Homer1a scaffold protein (Wang, et al., 2015).

On more granular level, there are numerous rTMS induced effects that likely mediate this enhanced synaptic function. Numerous studies, for example, report that hippocampal expression of brain derived neurotrophic factor (BDNF) and vascular endothelial growth factor (VEGF) are increased following rTMS (Gersner, et al., 2011, Ma, et al., 2014, Muller, et al., 2000, Shang, et al., 2016, Zhang, et al., 2015). In addition to these neurotrophic factors, rTMS reportedly increases expression of N-methyl-D-aspartate (NMDA) receptors and other proteins that facilitate synaptic plasticity (e.g., synaptophysin, post-synaptic density protein-95, cyclin dependent kinase 5, GAP43) (Etievant, et al., 2015, Kole, et al., 1999, Ma, et al., 2017, Ma, et al., 2014, Shang, et al., 2016, Wang, et al., 2010, Yang, et al., 2015, Zhang, et al., 2015).

Relatedly, there are reports of rTMS increases hippocampal neurogenesis in the dentate gyrus (Ueyama, et al., 2011), which plays a critical role in pattern separation (Clelland, et al., 2009). In addition to the neurotrophic mediators listed above, rTMS may promote neurogenesis via the increased expression of cholecystokinin (CCK) (Muller, et al., 2000). In addition to its neuroprotective effects in rodent models of AD (Sugaya, et al., 1992), CCK has been shown to increase cell proliferation and neurogenesis in the dentate gyrus (Reisi, et al., 2015). CCK is the most abundant peptide in the mammalian brain, and there is a dipropionate density of CCK receptors found in the hippocampus (Zarbin, et al., 1983). In numerous rodent models, increased expression of CCK corresponds with increased performance on hippocampal dependent tasks of learning and memory (Croll, et al., 1999, Reisi, et al., 2015, Sebret, et al., 1999, Taghzouti, et al., 1999). In a recent human study from the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, CCK concentration in the cerebrospinal fluid was identified as a novel biomarker that was associated with both cognitive status and gray matter volume in key anatomical regions associated with AD pathology (Plagman, et al., 2019).

These microscopic alterations from rTMS may also interact to produce network level changes in brain function that are more readily detected in human trials. As an example, consider the findings reported by Solé-Padullés and colleagues in their clinical trial of AD patients that utilized task-based fMRI before and after rTMS. They report that improvements in associative memory following rTMS corresponded with compensatory recruitment of additional neural networks (Sole-Padulles, et al., 2006). Similar compensatory brain activity has been previously documented in older adults who retain high cognitive functions as they age (Bangen, et al., 2012, Cabeza, et al., 2002).

Why does the DLPFC rTMS enhance memory functions in AD and MCI?

The DLPFC is a core region involved in executive functions, such as working memory and cognitive flexibility (Blumenfeld, et al., 2011, Blumenfeld and Ranganath, 2007). Previous research reported that patients with MCI and AD have executive function deficits (Baudic, et al., 2006, Chen, et al., 1998, Guarino, et al., 2018, Guarino, et al., 2019) and the impairments in executive functions are considered to exacerbate memory deficits in this population (Buckner, 2004, Zheng, et al., 2012). Our subgroup analyses provide evidence showing that the DLPFC rTMS significantly improved memory functions in patients with MCI or AD. One possible explanation for this effect is that the DLPFC may contribute to long-term memory formation through its interaction with regions within the medial temporal network (e.g., hippocampus) during memory encoding (Blumenfeld and Ranganath, 2006, Murray and Ranganath, 2007, Ranganath, et al., 2005, Simons and Spiers, 2003, Yuan, et al., 2016) and retrieval (Achim and Lepage, 2005, Balconi and Ferrari, 2012, Balconi and Ferrari, 2013, Manenti, et al., 2010, Simons and Spiers, 2003). Consistent with this idea, studies of patients with focal prefrontal lesion have reported that damage to the DLPFC can disrupt recognition memory (Duarte, et al., 2005, Gershberg and Shimamura, 1995); activity in the DLPFC during the early stage of working memory maintenance was predictive of subsequent long-term memory (Ranganath, et al., 2005); and disruption of working memory processing resulted in impaired long-term memory formation (Ranganath, et al., 2005). Collectively, previous behavioral and imaging studies suggest that successful long-term memory may depend on effective control of information in working memory (Blumenfeld and Ranganath, 2007), and this relationship might be mediated by the DLPFC (Ranganath, et al., 2005, Yuan, et al., 2016).

Additionally, our subgroup analyses revealed that both high-frequency rTMS over the left DLPFC and low-frequency rTMS at the right DLPFC significantly improved memory functions in patients with MCI or AD. These two rTMS protocols have also been examined in major depressive disorder (MDD), and previous meta-analyses in MDD show that these two rTMS protocols exhibited similarly lateralized clinical efficacy on response rate and remission rate (Cao, et al., 2018, Chen, et al., 2013). Previous brain imaging studies in MDD found reduced cerebral blood flow and metabolism in the left DLPFC and hypermetabolism in the right DLPFC in acute MDD (Mayberg, 2003, Phillips, et al., 2003). Thus, it is postulated that patients with MDD benefit from high-frequency rTMS over the left DLPFC due to increasing cortical activity and benefit from low-frequency rTMS over the right DLPFC because the cortical activity is suppressed (Avery, et al., 2006, Cao, et al., 2018, Chen, et al., 2010). Currently, it is not clear whether patients with MCI

or AD exhibit similar prefrontal asymmetry as patients with MDD do. Furthermore, functional brain imaging data examining how each rTMS protocol modulates brain activity of the DLPFC and other connected regions in MCI and AD is very limited. Future studies that integrate rTMS and brain imaging techniques will be needed to understand the prefrontal functions in MCI and AD, and better explain the DLPFC rTMS effects.

Notably, the same rTMS protocols over the respective DLPFC targets elicit positive clinical outcomes in both patients with depression and those with MCI/AD. As an additional consideration, this might also be suggestive that the reported rTMS influence on cognition may be an indirect consequence of improved affect. Scholars have long discussed the appreciable interaction and marginal phenomenological distinction between affect and cognition (Duncan and Barrett, 2007). The two behavioral phenotypes are increasingly intertwined with age (Crocco, et al., 2010), which may speak to enmeshed neurobiological mechanisms (e.g., inflammation) or it may be driven by a bidirectional interaction of the phenomenology of the conditions. Only a single study included in our analysis reported outcome measures pertaining to both affect and cognition (Ahmed, et al., 2012). Interestingly, these authors report that the cohort with appreciable improvement in cognition also exhibited a concomitant decrease in depressive symptoms (Ahmed, et al., 2012). This possibility is met with conflicting evidence in the literature. Generally, cognitive improvements are not observed in clinical trials applying rTMS for depression (Martin, et al., 2017). However, this potential effect is likely influenced by the baseline cognitive status of patients receiving DLPFC rTMS. As such, the association between neurocognitive and mood improvement following rTMS may be more likely to emerge in populations where baseline cognition is more vulnerable (Ilieva, et al., 2018).

Limitations and future directions

Regarding the limitations of the present meta-analysis, our results could be constrained by insufficient number of patients (i.e., less than 400 patients with MCI or AD) included in this meta-analysis. In addition, very few studies have stimulated brain regions other than the DLPFC, therefore, the non-significant rTMS effects of other brain regions should be interpreted with caution. Future studies should focus on establishing a more precise relationship between stimulation site, rTMS frequency, and function of cognitive domains enhanced by rTMS; as well as 2) establishing a procedure to tailor the rTMS parameters for each individual patient.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

This work was supported by the NIH P30 AG019610 Arizona Alzheimer's Consortium Pilot Study Program (Pilot Project PI: Y.-H. C.) and the BIO5 Team Scholars Award (PI: Y.-H. C.). The authors thank William Mennie for assistance in literature review.

REFERENCES

- Achim AM, Lepage M 2005 Dorsolateral prefrontal cortex involvement in memory post-retrieval monitoring revealed in both item and associative recognition tests. Neuroimage 24, 1113–21. [PubMed: 15670688]
- Ahmed MA, Darwish ES, Khedr EM, El Serogy YM, Ali AM 2012 Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurol 259, 83–92. [PubMed: 21671144]
- Anderkova L, Eliasova I, Marecek R, Janousova E, Rektorova I 2015 Distinct Pattern of Gray Matter Atrophy in Mild Alzheimer's Disease Impacts on Cognitive Outcomes of Noninvasive Brain Stimulation. Journal of Alzheimer's disease : JAD 48, 251–60. [PubMed: 26401945]
- Atkins D, Best D, Briss PA, Eccles M, Falck-Ytter Y, Flottorp S, Guyatt GH, Harbour RT, Haugh MC, Henry D, Hill S, Jaeschke R, Leng G, Liberati A, Magrini N, Mason J, Middleton P, Mrukowicz J, O'Connell D, Oxman AD, Phillips B, Schunemann HJ, Edejer T, Varonen H, Vist GE, Williams JW Jr., Zaza S, Group, G.W. 2004 Grading quality of evidence and strength of recommendations. BMJ 328, 1490. [PubMed: 15205295]
- Avery DH, Holtzheimer PE 3rd, Fawaz W, Russo J, Neumaier J, Dunner DL, Haynor DR, Claypoole KH, Wajdik C, Roy-Byrne P 2006 A controlled study of repetitive transcranial magnetic stimulation in medication-resistant major depression. Biol Psychiatry 59, 187–94. [PubMed: 16139808]
- Balconi M, Ferrari C 2012 Emotional memory retrieval. rTMS stimulation on left DLPFC increases the positive memories. Brain imaging and behavior 6, 454–61. [PubMed: 22544230]
- Balconi M, Ferrari C 2013 Repeated transcranial magnetic stimulation on dorsolateral prefrontal cortex improves performance in emotional memory retrieval as a function of level of anxiety and stimulus valence. Psychiatry Clin Neurosci 67, 210–8. [PubMed: 23683151]
- Bangen KJ, Kaup AR, Mirzakhanian H, Wierenga CE, Jeste DV, Eyler LT 2012 Compensatory brain activity during encoding among older adults with better recognition memory for face-name pairs: an integrative functional, structural, and perfusion imaging study. J Int Neuropsychol Soc 18, 402–13. [PubMed: 22433609]
- Barker AT, Jalinous R, Freeston IL 1985 Non-invasive magnetic stimulation of human motor cortex. Lancet 1, 1106–7. [PubMed: 2860322]
- Baudic S, Barba GD, Thibaudet MC, Smagghe A, Remy P, Traykov L 2006 Executive function deficits in early Alzheimer's disease and their relations with episodic memory. Arch Clin Neuropsychol 21, 15–21. [PubMed: 16125364]
- Bestmann S, Krakauer JW 2015 The uses and interpretations of the motor-evoked potential for understanding behaviour. Exp Brain Res 233, 679–89. [PubMed: 25563496]
- Birba A, Ibanez A, Sedeno L, Ferrari J, Garcia AM, Zimerman M 2017 Non-Invasive Brain Stimulation: A New Strategy in Mild Cognitive Impairment? Front Aging Neurosci 9, 16. [PubMed: 28243198]
- Blumenfeld RS, Parks CM, Yonelinas AP, Ranganath C 2011 Putting the pieces together: the role of dorsolateral prefrontal cortex in relational memory encoding. Journal of cognitive neuroscience 23, 257–65. [PubMed: 20146616]
- Blumenfeld RS, Ranganath C 2006 Dorsolateral prefrontal cortex promotes long-term memory formation through its role in working memory organization. J Neurosci 26, 916–25. [PubMed: 16421311]
- Blumenfeld RS, Ranganath C 2007 Prefrontal cortex and long-term memory encoding: an integrative review of findings from neuropsychology and neuroimaging. Neuroscientist 13, 280–91. [PubMed: 17519370]
- Borenstein M, Hedges LV, Higgins JPT, Rothstein HR 2009 Publication bias. Introduction to metaanalysis John Wiley and Sons, Chichester, UK.
- Buckner RL 2004 Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44, 195–208. [PubMed: 15450170]
- Cabeza R, Anderson ND, Locantore JK, McIntosh AR 2002 Aging gracefully: compensatory brain activity in high-performing older adults. Neuroimage 17, 1394–402. [PubMed: 12414279]

- Cao X, Deng C, Su X, Guo Y 2018 Response and Remission Rates Following High-Frequency vs. Low-Frequency Repetitive Transcranial Magnetic Stimulation (rTMS) Over Right DLPFC for Treating Major Depressive Disorder (MDD): A Meta-Analysis of Randomized, Double-Blind Trials. Front Psychiatry 9, 413. [PubMed: 30245641]
- Chen J, Zhou C, Wu B, Wang Y, Li Q, Wei Y, Yang D, Mu J, Zhu D, Zou D, Xie P 2013 Left versus right repetitive transcranial magnetic stimulation in treating major depression: a meta-analysis of randomised controlled trials. Psychiatry Res 210, 1260–4. [PubMed: 24113125]
- Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG 1997 Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48, 1398–403. [PubMed: 9153480]
- Chen ST, Sultzer DL, Hinkin CH, Mahler ME, Cummings JL 1998 Executive dysfunction in Alzheimer's disease: association with neuropsychiatric symptoms and functional impairment. J Neuropsychiatry Clin Neurosci 10, 426–32. [PubMed: 9813788]
- Cheng CPW, Wong CSM, Lee KK, Chan APK, Yeung JWF, Chan WC 2017 Effects of repetitive transcranial magnetic stimulation on improvement of cognition in elderly patients with cognitive impairment: a systematic review and meta-analysis. Int J Geriatr Psychiatry
- Chou YH, Hickey PT, Sundman M, Song AW, Chen NK 2015a Effects of Repetitive Transcranial Magnetic Stimulation on Motor Symptoms in Parkinson Disease: A Systematic Review and Metaanalysis. JAMA neurology 72, 432–40. [PubMed: 25686212]
- Chou YH, You H, Wang H, Zhao YP, Hou B, Chen NK, Feng F 2015b Effect of repetitive transcranial magnetic stimulation on fMRI resting-state connectivity in multiple system atrophy. Brain Connect 5, 451–9. [PubMed: 25786196]
- Clelland CD, Choi M, Romberg C, Clemenson GD Jr., Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ 2009 A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325, 210–3. [PubMed: 19590004]
- Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF, Miniussi C 2011 Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry 82, 794–7. [PubMed: 20574108]
- Cotelli M, Manenti R, Cappa SF, Zanetti O, Miniussi C 2008 Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol 15, 1286–92. [PubMed: 19049544]
- Crocco EA, Castro K, Loewenstein DA 2010 How late-life depression affects cognition: neural mechanisms. Curr Psychiatry Rep 12, 34–8. [PubMed: 20425308]
- Croll SD, Chesnutt CR, Greene NA, Lindsay RM, Wiegand SJ 1999 Peptide immunoreactivity in aged rat cortex and hippocampus as a function of memory and BDNF infusion. Pharmacol Biochem Behav 64, 625–35. [PubMed: 10548280]
- de Morton NA 2009 The PEDro scale is a valid measure of the methodological quality of clinical trials: a demographic study. Aust J Physiother 55, 129–33. [PubMed: 19463084]
- Dong X, Yan L, Huang L, Guan X, Dong C, Tao H, Wang T, Qin X, Wan Q 2018 Repetitive transcranial magnetic stimulation for the treatment of Alzheimer's disease: A systematic review and meta-analysis of randomized controlled trials. PLoS One 13, e0205704. [PubMed: 30312319]
- Drumond Marra HL, Myczkowski ML, Maia Memoria C, Arnaut D, Leite Ribeiro P, Sardinha Mansur CG, Lancelote Alberto R, Boura Bellini B, Alves Fernandes da Silva A, Tortella G, Ciampi de Andrade D, Teixeira MJ, Forlenza OV, Marcolin MA 2015 Transcranial Magnetic Stimulation to Address Mild Cognitive Impairment in the Elderly: A Randomized Controlled Study. Behav Neurol 2015, 287843. [PubMed: 26160997]
- Duarte A, Ranganath C, Knight RT 2005 Effects of unilateral prefrontal lesions on familiarity, recollection, and source memory. J Neurosci 25, 8333–7. [PubMed: 16148241]
- Duncan S, Barrett LF 2007 Affect is a form of cognition: A neurobiological analysis. Cogn Emot 21, 1184–211. [PubMed: 18509504]
- Egger M, Smith GD, Schneider M, Minder C 1997 Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315, 629–34. [PubMed: 9310563]

- Eliasova I, Anderkova L, Marecek R, Rektorova I 2014 Non-invasive brain stimulation of the right inferior frontal gyrus may improve attention in early Alzheimer's disease: a pilot study. J Neurol Sci 346, 318–22. [PubMed: 25216556]
- Etievant A, Manta S, Latapy C, Magno LA, Fecteau S, Beaulieu JM 2015 Repetitive transcranial magnetic stimulation induces long-lasting changes in protein expression and histone acetylation. Sci Rep 5, 16873. [PubMed: 26585834]
- Fitzgerald PB, Fountain S, Daskalakis ZJ 2006 A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol 117, 2584–96. [PubMed: 16890483]
- Fitzgerald PB, Hoy K, Daskalakis ZJ, Kulkarni J 2009 A randomized trial of the anti-depressant effects of low- and high-frequency transcranial magnetic stimulation in treatment-resistant depression. Depress Anxiety 26, 229–34. [PubMed: 19105212]
- Franssen M, Winward C, Collett J, Wade D, Dawes H 2014 Interventions for fatigue in Parkinson's disease: A systematic review and meta-analysis. Mov Disord 29, 1675–8. [PubMed: 25234443]
- George MS, Lisanby SH, Avery D, McDonald WM, Durkalski V, Pavlicova M, Anderson B, Nahas Z, Bulow P, Zarkowski P, Holtzheimer PE 3rd, Schwartz T, Sackeim HA 2010 Daily left prefrontal transcranial magnetic stimulation therapy for major depressive disorder: a sham-controlled randomized trial. Arch Gen Psychiatry 67, 507–16. [PubMed: 20439832]
- Gershberg FB, Shimamura AP 1995 Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia 33, 1305–33. [PubMed: 8552230]
- Gersner R, Kravetz E, Feil J, Pell G, Zangen A 2011 Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. J Neurosci 31, 7521–6. [PubMed: 21593336]
- Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M, Casagrande M 2018 Executive Functions in Alzheimer Disease: A Systematic Review. Front Aging Neurosci 10, 437. [PubMed: 30697157]
- Guarino A, Forte G, Giovannoli J, Casagrande M 2019 Executive functions in the elderly with mild cognitive impairment: a systematic review on motor and cognitive inhibition, conflict control and cognitive flexibility. Aging Ment Health, 1–18.
- Guyatt GH, Oxman AD, Kunz R, Brozek J, Alonso-Coello P, Rind D, Devereaux PJ, Montori VM, Freyschuss B, Vist G, Jaeschke R, Williams JW Jr., Murad MH, Sinclair D, Falck-Ytter Y, Meerpohl J, Whittington C, Thorlund K, Andrews J, Schunemann HJ 2011 GRADE guidelines 6. Rating the quality of evidence--imprecision. J Clin Epidemiol 64, 1283–93. [PubMed: 21839614]
- Hallett M 2007 Transcranial magnetic stimulation: a primer. Neuron 55, 187-99. [PubMed: 17640522]
- Higgins JP, Thompson SG, Deeks JJ, Altman DG 2003 Measuring inconsistency in meta-analyses. BMJ 327, 557–60. [PubMed: 12958120]
- Hsu WY, Ku Y, Zanto TP, Gazzaley A 2015 Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer's disease: a systematic review and meta-analysis. Neurobiology of aging 36, 2348–59. [PubMed: 26022770]
- Huang Z, Tan T, Du Y, Chen L, Fu M, Yu Y, Zhang L, Song W, Dong Z 2017 Low-Frequency Repetitive Transcranial Magnetic Stimulation Ameliorates Cognitive Function and Synaptic Plasticity in APP23/PS45 Mouse Model of Alzheimer's Disease. Front Aging Neurosci 9, 292. [PubMed: 28955219]
- Ilieva IP, Alexopoulos GS, Dubin MJ, Morimoto SS, Victoria LW, Gunning FM 2018 Age-Related Repetitive Transcranial Magnetic Stimulation Effects on Executive Function in Depression: A Systematic Review. Am J Geriatr Psychiatry 26, 334–46. [PubMed: 29111132]
- Klomjai W, Katz R, Lackmy-Vallee A 2015 Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med 58, 208–13. [PubMed: 26319963]
- Koch G, Bonni S, Pellicciari MC, Casula EP, Mancini M, Esposito R, Ponzo V, Picazio S, Di Lorenzo F, Serra L, Motta C, Maiella M, Marra C, Cercignani M, Martorana A, Caltagirone C, Bozzali M 2018 Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer's disease. Neuroimage 169, 302–11. [PubMed: 29277405]
- Kole MH, Fuchs E, Ziemann U, Paulus W, Ebert U 1999 Changes in 5-HT1A and NMDA binding sites by a single rapid transcranial magnetic stimulation procedure in rats. Brain research 826, 309–12. [PubMed: 10224311]

- Liao X, Li G, Wang A, Liu T, Feng S, Guo Z, Tang Q, Jin Y, Xing G, McClure MA, Chen H, He B, Liu H, Mu Q 2015 Repetitive Transcranial Magnetic Stimulation as an Alternative Therapy for Cognitive Impairment in Alzheimer's Disease: A Meta-Analysis. Journal of Alzheimer's disease : JAD 48, 463–72. [PubMed: 26402010]
- Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, Voss HU, Casey BJ, Etkin A, Dubin MJ 2014 Default mode network mechanisms of transcranial magnetic stimulation in depression. Biol Psychiatry 76, 517–26. [PubMed: 24629537]
- Ma J, Wang J, Lv C, Pang J, Han B, Wang M, Gen Y 2017 The Role of Hippocampal Structural Synaptic Plasticity in Repetitive Transcranial Magnetic Stimulation to Improve Cognitive Function in Male SAMP8 Mice. Cell Physiol Biochem 41, 137–44. [PubMed: 28214838]
- Ma J, Zhang Z, Kang L, Geng D, Wang Y, Wang M, Cui H 2014 Repetitive transcranial magnetic stimulation (rTMS) influences spatial cognition and modulates hippocampal structural synaptic plasticity in aging mice. Exp Gerontol 58, 256–68. [PubMed: 25172625]
- Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M 2003 Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys Ther 83, 713–21. [PubMed: 12882612]
- Manenti R, Cotelli M, Calabria M, Maioli C, Miniussi C 2010 The role of the dorsolateral prefrontal cortex in retrieval from long-term memory depends on strategies: a repetitive transcranial magnetic stimulation study. Neuroscience 166, 501–7. [PubMed: 20034547]
- Martin DM, McClintock SM, Forster JJ, Lo TY, Loo CK 2017 Cognitive enhancing effects of rTMS administered to the prefrontal cortex in patients with depression: A systematic review and metaanalysis of individual task effects. Depress Anxiety 34, 1029–39. [PubMed: 28543994]
- Mayberg HS 2003 Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65, 193–207. [PubMed: 12697626]
- Moher D, Liberati A, Tetzlaff J, Altman DG, Group, P. 2009 Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097. [PubMed: 19621072]
- Muller MB, Toschi N, Kresse AE, Post A, Keck ME 2000 Long-term repetitive transcranial magnetic stimulation increases the expression of brain-derived neurotrophic factor and cholecystokinin mRNA, but not neuropeptide tyrosine mRNA in specific areas of rat brain. Neuropsychopharmacology 23, 205–15. [PubMed: 10882847]
- Murray LJ, Ranganath C 2007 The dorsolateral prefrontal cortex contributes to successful relational memory encoding. J Neurosci 27, 5515–22. [PubMed: 17507573]
- Nardone R, Tezzon F, Holler Y, Golaszewski S, Trinka E, Brigo F 2014 Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand 129, 351–66. [PubMed: 24506061]
- O'Connell NE, Wand BM, Marston L, Spencer S, Desouza LH 2014 Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 4, CD008208.
- O'Reardon JP, Solvason HB, Janicak PG, Sampson S, Isenberg KE, Nahas Z, McDonald WM, Avery D, Fitzgerald PB, Loo C, Demitrack MA, George MS, Sackeim HA 2007 Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: a multisite randomized controlled trial. Biol Psychiatry 62, 1208–16. [PubMed: 17573044]
- Padala PR, Padala KP, Lensing SY, Jackson AN, Hunter CR, Parkes CM, Dennis RA, Bopp MM, Caceda R, Mennemeier MS, Roberson PK, Sullivan DH 2018 Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: A double-blind, randomized, shamcontrolled, cross-over pilot study. Psychiatry Res 261, 312–8. [PubMed: 29331848]
- Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M 1994 Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117 (Pt 4), 847–58. [PubMed: 7922470]
- Phillips ML, Drevets WC, Rauch SL, Lane R 2003 Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry 54, 515–28. [PubMed: 12946880]
- Plagman A, Hoscheidt S, McLimans KE, Klinedinst B, Pappas C, Anantharam V, Kanthasamy A, Willette AA, Alzheimer's Disease Neuroimaging I 2019 Cholecystokinin and Alzheimer's disease: a biomarker of metabolic function, neural integrity, and cognitive performance. Neurobiology of aging 76, 201–7. [PubMed: 30739077]

- Ranganath C, Cohen MX, Brozinsky CJ 2005 Working memory maintenance contributes to long-term memory formation: neural and behavioral evidence. Journal of cognitive neuroscience 17, 994– 1010. [PubMed: 16102232]
- Reisi P, Ghaedamini AR, Golbidi M, Shabrang M, Arabpoor Z, Rashidi B 2015 Effect of cholecystokinin on learning and memory, neuronal proliferation and apoptosis in the rat hippocampus. Adv Biomed Res 4, 227. [PubMed: 26623402]
- Rutherford G, Lithgow B, Moussavi Z 2015 Short and Long-term Effects of rTMS Treatment on Alzheimer's Disease at Different Stages: A Pilot Study. J Exp Neurosci 9, 43–51.
- Sebret A, Lena I, Crete D, Matsui T, Roques BP, Dauge V 1999 Rat hippocampal neurons are critically involved in physiological improvement of memory processes induced by cholecystokinin-B receptor stimulation. J Neurosci 19, 7230–7. [PubMed: 10436075]
- Shang Y, Wang X, Shang X, Zhang H, Liu Z, Yin T, Zhang T 2016 Repetitive transcranial magnetic stimulation effectively facilitates spatial cognition and synaptic plasticity associated with increasing the levels of BDNF and synaptic proteins in Wistar rats. Neurobiol Learn Mem 134 Pt B, 369–78. [PubMed: 27555233]
- Simons JS, Spiers HJ 2003 Prefrontal and medial temporal lobe interactions in long-term memory. Nat Rev Neurosci 4, 637–48. [PubMed: 12894239]
- Sole-Padulles C, Bartres-Faz D, Junque C, Clemente IC, Molinuevo JL, Bargallo N, Sanchez-Aldeguer J, Bosch B, Falcon C, Valls-Sole J 2006 Repetitive transcranial magnetic stimulation effects on brain function and cognition among elders with memory dysfunction. A randomized sham-controlled study. Cereb Cortex 16, 1487–93. [PubMed: 16339086]
- Sugaya K, Takahashi M, Kubota K 1992 Cholecystokinin protects cholinergic neurons against basal forebrain lesion. Jpn J Pharmacol 59, 125–8. [PubMed: 1507652]
- Sutton SK, Davidson RJ 1997 Prefrontal brain asymmetry: A biological substrate of the behavioral approach and inhibition systems. Psychological Science 8, 204–10.
- Taghzouti K, Lena I, Dellu F, Roques BP, Dauge V, Simon H 1999 Cognitive enhancing effects in young and old rats of pBC264, a selective CCK(B) receptor agonist. Psychopharmacology (Berl) 143, 141–9. [PubMed: 10326776]
- Tan T, Xie J, Liu T, Chen X, Zheng X, Tong Z, Tian X 2013 Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Abeta(1–42)-mediated memory deficits in rats. Exp Gerontol 48, 786–94. [PubMed: 23665072]
- Thickbroom GW 2007 Transcranial magnetic stimulation and synaptic plasticity: experimental framework and human models. Exp Brain Res 180, 583–93. [PubMed: 17562028]
- Turriziani P, Smirni D, Zappala G, Mangano GR, Oliveri M, Cipolotti L 2012 Enhancing memory performance with rTMS in healthy subjects and individuals with Mild Cognitive Impairment: the role of the right dorsolateral prefrontal cortex. Front Hum Neurosci 6, 62. [PubMed: 22514525]
- Ueyama E, Ukai S, Ogawa A, Yamamoto M, Kawaguchi S, Ishii R, Shinosaki K 2011 Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci 65, 77–81. [PubMed: 21265939]
- Wang F, Geng X, Tao HY, Cheng Y 2010 The restoration after repetitive transcranial magnetic stimulation treatment on cognitive ability of vascular dementia rats and its impacts on synaptic plasticity in hippocampal CA1 area. J Mol Neurosci 41, 145–55. [PubMed: 19953343]
- Wang F, Zhang Y, Wang L, Sun P, Luo X, Ishigaki Y, Sugai T, Yamamoto R, Kato N 2015 Improvement of spatial learning by facilitating large-conductance calcium-activated potassium channel with transcranial magnetic stimulation in Alzheimer's disease model mice. Neuropharmacology 97, 210–9. [PubMed: 26051398]
- Wang JX, Rogers LM, Gross EZ, Ryals AJ, Dokucu ME, Brandstatt KL, Hermiller MS, Voss JL 2014 Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science 345, 1054–7. [PubMed: 25170153]
- Wu Y, Xu W, Liu X, Xu Q, Tang L, Wu S 2015 Adjunctive treatment with high frequency repetitive transcranial magnetic stimulation for the behavioral and psychological symptoms of patients with Alzheimer's disease: a randomized, double-blind, sham-controlled study. Shanghai Arch Psychiatry 27, 280–8. [PubMed: 26977125]

- Yang HY, Liu Y, Xie JC, Liu NN, Tian X 2015 Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behav Brain Res 281, 149–55. [PubMed: 25541037]
- Yuan B, Chen J, Gong L, Shu H, Liao W, Wang Z, Liu D, Xie C, Zhang Z 2016 Mediation of episodic memory performance by the executive function network in patients with amnestic mild cognitive impairment: a resting-state functional MRI study. Oncotarget 7, 64711–25. [PubMed: 27589839]
- Zarbin MA, Innis RB, Wamsley JK, Snyder SH, Kuhar MJ 1983 Autoradiographic localization of cholecystokinin receptors in rodent brain. J Neurosci 3, 877–906. [PubMed: 6300358]
- Zhang N, Xing M, Wang Y, Tao H, Cheng Y 2015 Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience 311, 284–91. [PubMed: 26518460]
- Zhang XQ, Li L, Huo JT, Cheng M, Li LH 2018 Effects of repetitive transcranial magnetic stimulation on cognitive function and cholinergic activity in the rat hippocampus after vascular dementia. Neural Regen Res 13, 1384–9. [PubMed: 30106050]
- Zhao J, Li Z, Cong Y, Zhang J, Tan M, Zhang H, Geng N, Li M, Yu W, Shan P 2017 Repetitive transcranial magnetic stimulation improves cognitive function of Alzheimer's disease patients. Oncotarget 8, 33864–71. [PubMed: 27823981]
- Zhen J, Qian Y, Weng X, Su W, Zhang J, Cai L, Dong L, An H, Su R, Wang J, Zheng Y, Wang X 2017 Gamma rhythm low field magnetic stimulation alleviates neuropathologic changes and rescues memory and cognitive impairments in a mouse model of Alzheimer's disease. Alzheimers Dement (N Y) 3, 487–97. [PubMed: 29124106]
- Zheng D, Dong X, Sun H, Xu Y, Ma Y, Wang X 2012 The overall impairment of core executive function components in patients with amnestic mild cognitive impairment: a cross-sectional study. BMC Neurol 12, 138. [PubMed: 23164134]

Highlights

- Repetitive TMS is a promising tool to enhance cognitive functions in AD and MCI
- High-frequency L-DLPFC and low-frequency R-DLPFC rTMS may improve memory function
- High-frequency R-IFG rTMS may enhance executive performance
- rTMS effects on cognition are documented at both acute and chronic time points
- Chronic effects of consecutive rTMS sessions reportedly persist at 12 weeks

Figure 1.

Flow diagram showing the search and selection procedure that was used for this metaanalysis. Diagram adapted from Moher et al. (Moher, et al., 2009).

Study name				Statistics f	or each	study				Std diff	in means a	and 95% Cl	
	Sample size	Std diff in means	Standard error	Variance	Lower limit	Upper limit	Z-Value	p-Value					
Drumond et al., 2015	34	0.689	0.344	0.118	0.015	1.363	2.003	0.045	1	- 1			-
Turriziani et al., 2012	8	1.527	0.520	0.271	0.507	2.547	2.935	0.003					\rightarrow
Eliasova et al., 2014	10	0.410	0.640	0.410	-0.846	1.665	0.640	0.522			_	- +	\rightarrow
Sole-Padulles et al., 2006	39	0.678	0.329	0.109	0.032	1.324	2.058	0.040					\rightarrow
Padala et al., 2018	9	2.033	0.619	0.383	0.819	3.246	3.284	0.001				-	\rightarrow
Anderkova et al., 2015	20	0.630	0.245	0.060	0.149	1.111	2.568	0.010					\rightarrow
Koch et al., 2018	14	0.268	0.537	0.288	-0.785	1.320	0.498	0.618			_		\rightarrow
Wu et al., 2015	52	0.674	0.285	0.081	0.115	1.233	2.364	0.018			- I -	── ┼ ╋─	\rightarrow
Rutherford et al., 2015	10	1.046	0.674	0.455	-0.276	2.367	1.551	0.121					\rightarrow
Ahmed et al., 2012a	21	1.398	0.490	0.241	0.436	2.359	2.850	0.004					\rightarrow
Ahmed et al., 2012b	9	0.194	0.674	0.454	-1.127	1.515	0.288	0.773					\rightarrow
Ahmed et al., 2012c	22	0.353	0.431	0.186	-0.493	1.198	0.818	0.414			_		\rightarrow
Ahmed et al., 2012d	8	0.619	0.729	0.532	-0.811	2.048	0.848	0.396				-	\rightarrow
Zhao et al., 2017	30	0.375	0.372	0.138	-0.353	1.104	1.010	0.312				_	\rightarrow
Cotelli et al., 2011	10	1.325	0.698	0.488	-0.044	2.693	1.897	0.058	- 1		-+-		\rightarrow
Cotelli et al., 2008a	12	1.162	0.374	0.140	0.430	1.894	3.110	0.002					\rightarrow
Cotelli et al., 2008b	12	0.897	0.343	0.117	0.225	1.569	2.618	0.009		1			→
Across Studies	293	0.770	0.100	0.010	0.574	0.967	7.686	0.000		1			-
									-1.00	-0.50	0.00	0.50	1.0
										Favors Control		Favors Treatment	

Figure 2.

Forest plot. Individual and pooled rTMS effect sizes (SMDs) for cognitive function in patients with MCI or AD. The size of the squares increases with increasing sample size. Cotelli et al. (2008) reported statistics from mild AD (Cotelli et al., 2008a) and moderate-to-severe AD (Cotelli et al., 2008b) separately, and Ahmed et al. (2012) described statistics from 4 groups (Ahmed et al., 2012a = high-frequency rTMS in mild AD; Ahmed et al., 2012b = high-frequency rTMS in severe AD; Ahmed et al., 2012d = low-frequency rTMS in severe AD;), therefore, those data were included as multiple independent units in the meta-analysis.

Figure 3.

frequency rTMS effect

rTMS effect sizes for various combinations of stimulation site, frequency, and outcome measures. DLPFC = dorsolateral prefrontal cortex; ES = effect size; High-F = highfrequency rTMS; IFG = inferior frontal gyrus; Low-F = low-frequency rTMS.

High-F, ES = 0.6

p < .01

~	
Ð)
q	
Га	
Ha	2

and design
participants
studies –
of included
Characteristics o

Padala et al., 2018 g^a MCI 66 ± 9 $8/1$ NA R_1 Koch et al., 201814aMCI 70 ± 5 $7/7$ 1 R_2 Koch et al., 201730ADAD 71 ± 6 $15/15$ NA R_1 Zhao et al., 201730AD AD 71 ± 6 $15/15$ NA R_1 Wu et al., 20152012AD 72 ± 5 $21/31$ 3 ± 2 R_1 Wu et al., 201510AD 70 ± 5 $37/7$ $9/11$ 3 ± 2 R_1 Wu et al., 201510AD 70 ± 5 $37/7$ $37/7$ NA R_2 Unmond Marra et al., 201510AD 70 ± 5 $37/7$ $37/7$ NA R_2 Drumond Marra et al., 201510AD 70 ± 5 $37/7$ $37/7$ NA R_2 Anned et al., 20141077 75 ± 8 64 ± 6 $8/0$ R_2 Anned et al., 20128MCI 75 ± 8 66 ± 6 $8/0$ $1-2^{2}$ R_2 Anned et al., 20128MCI 76 ± 5 NA 10^{2} R_2 R_2 Cotelli et al., 2008, mAD12MCI 75 ± 6 NA 10^{2} R_2 Cotelli et al., 2008, mAD12Moderate severe AD 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12Moderate severe AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD12Moderate severe AD 75 ± 6	Source	Sample size	Diagnosis	Age (years)	Gender (M/F)	DD (years)	Study design
Koch et al., 201814aMCI 70 ± 5 $7/7$ 1 R_1 Zhao et al., 201730ADAD 71 ± 6 $15/15$ NA R_1 Zhao et al., 201730ADAD 73 ± 7 $9/11$ 3 ± 2 R_1 Anderkova et al., 20152012 AD, 8 MCI 73 ± 7 $9/11$ 3 ± 2 R_2 Wu et al., 201552ADAD 72 ± 5 $21/31$ 5 ± 2 R_2 Rutherford et al., 201510ADAD 72 ± 5 $21/31$ 5 ± 2 R_2 Drumond Marra et al., 201534MCI $60 - 74$ $12/22$ NA R_2 Ahmed et al., 201410775 \pm 8 $64 - 74$ R_2 R_2 Ahmed et al., 20128Probable AD 68 ± 6 $16/29$ NA R_2 Ahmed et al., 20128aMCI 75 ± 8 $64 - 6$ $8/0$ $1-2$ R_2 Cotelli et al., 201310AD 76 ± 5 NA R_2 R_2 Cotelli et al., 201810AD 76 ± 6 NA R_2 Cotelli et al., 2008, mAD12MCI 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD12Moderate to severe AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD12Moderate to severe AD 75 ± 6 NA NA R_2 Cotelli et al., 200839NA NA NA NA NA NA NA	Padala et al., 2018	<i>e</i> 6	MCI	66 ± 9	8/1	NA	RAN_CO_DB_SC
Zhao et al., 201730AD $T1 \pm 6$ $15/15$ NA R_1 Anderkova et al., 201520 12 AD, 8 MCI 73 ± 7 $9/11$ 3 ± 2 R_2 Anderkova et al., 201552AD 12 AD, 8 MCI 72 ± 5 $21/31$ 3 ± 2 R_2 Wu et al., 201552ADAD 72 ± 5 $21/31$ 5 ± 2 R_2 Rutherford et al., 201510AD $60 - 74$ $12/22$ NA R_2 Drunond Marra et al., 201534MCI $66 - 74$ $12/22$ NA R_2 Ahmed et al., 2014107 Mild AD, 3 MCI 55 ± 8 $6/4$ 24 R_2 Ahmed et al., 201245Probable AD 68 ± 6 $16/29$ NA R_2 Ahmed et al., 20128MCI 66 ± 6 $8/0$ $1-2^{\circ}$ R_2 Cotelli et al., 201110AD 75 ± 8 NA R_2 Cotelli et al., 2008, mAD12MId AD 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 75 ± 6 NA NA R_2 Cotelli et al., 200812moderate to severe AD 75 ± 6 NA NA	Koch et al., 2018	14	aMCI	70 ± 5	L/L	1	RAN_CO_DB_SC
Anderkova et al., 201520 12 AD , 8 MCI 73 ± 7 $9/11$ 3 ± 2 R_1 Wu et al., 201552ADAD 72 ± 5 $21/31$ 5 ± 2 R_1 Wu et al., 201510ADAD $57 - 87$ $3/7$ NA R_2 Putherford et al., 201534MCI $60 - 74$ $12/22$ NA R_2 Drumond Marra et al., 201534MCI 77 ± 8 $6/4$ R_2 R_2 Ahmed et al., 201245Probable AD 68 ± 6 $16/29$ NA R_2 Ahmed et al., 20128MCI 75 ± 8 $6/4$ R_2 R_2 Ahmed et al., 20128MCI 66 ± 6 $8/0$ $1-2$ R_2 Cotelli et al., 201110AD 76 ± 5 NA R_2 R_2 Cotelli et al., 2008, mAD12Mid AD 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12mid AD 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 78 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 78 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 78 ± 6 NA R_2 Sole-Padulles et al., 200639MCI 50 128 NA R_2	Zhao et al., 2017	30	AD	71 ± 6	15/15	NA	RAN_PA_DB_SC
Wu et al., 2015 52 AD AD $T2 \pm 5$ $21/31$ 5 ± 2 R_1 Rutherford et al., 2015 10ADAD $57 - 87$ $3/7$ NA R_1 Drumond Marra et al., 2015 34MCI $60 - 74$ $12/22$ NA R_1 Drumond Marra et al., 2014 10 7 Mild AD, 3 aMCI 75 ± 8 $6/4$ -4 R_1 Ahmed et al., 2014 10 7 Mild AD, 3 aMCI 75 ± 8 $6/4$ -4 R_1 Ahmed et al., 2012 45 Probable AD 68 ± 6 $16/29$ NA R_2 Ahmed et al., 2012 8 aMCI 75 ± 8 $6/4$ -4 R_2 Cotelli et al., 2012 8 aMCI 76 ± 6 $8/0$ $1-2$ R_2 Cotelli et al., 2011 10AD 76 ± 6 NA NA R_2 Cotelli et al., 2008 , mAD12mild AD 75 ± 6 NA NA R_2 Cotelli et al., 2008 , mAD12moderate to severe AD 78 ± 6 NA NA R_2 Sole-Padulles et al., 2008 39 39 MCI 50 128	Anderkova et al., 2015	20	12 AD, 8 MCI	73 ± 7	9/11	3 ± 2	RAN_CO_SB_SC
Rutherford et al., 201510AD $37 - 87$ $3/7$ NA R_1 Drumond Marra et al., 2015 34 MCI $60 - 74$ $12/22$ NA R_2 Eliasova et al., 2014107 Mild AD, 3 MCI 75 ± 8 $6/4$ R_2 R_2 Ahmed et al., 2012 45 Probable AD 68 ± 6 $16/29$ NA R_2 Intriziani et al., 2012 8 MCI 66 ± 6 $8/0$ $1-2$ R_2 Cotelli et al., 201110AD 76 ± 5 NA R_2 R_2 Cotelli et al., 2008, mAD12 $MId AD$ 75 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 78 ± 6 NA R_2 Cotelli et al., 2008, mAD12moderate to severe AD 78 ± 6 NA R_2 Sole-Padulles et al., 200639MCI 50 $1/28$ 1 NA R_2	Wu et al., 2015	52	AD	72 ± 5	21/31	5 ± 2	RAN_PA_DB_SC
Drumond Marra et al., 2015 34 MCI $60 - 74$ $12/22$ NA R_1 Eliasova et al., 201410 7 Mild AD, 3 aMCI 75 ± 8 $6/4$ ~ 4 R_1 Ahmed et al., 2012 45 Probable AD 68 ± 6 $16/29$ NA R_1 Turriziani et al., 2012 8 aMCI 66 ± 6 $8/0$ $1-2$ R_1 Cotelli et al., 201110AD 75 ± 6 NA R_2 R_2 Cotelli et al., 2008, mAD12mild AD 75 ± 6 NA R_2 R_2 Cotelli et al., 2008, mSAD12moderate to severe AD 78 ± 6 NA R_2 Sole-Padulles et al., 200639aMCI 50 128 NA R_2	Rutherford et al., 2015	10	AD	57 - 87	3/7	NA	RAN_CO_DB_SC
Eliasova et al., 2014 10 7 Mild AD, 3 MCI 75 \pm 8 6/4 \sim 4 R_1 Ahmed et al., 2012 45 Probable AD 68 \pm 6 16/29 NA R Turriziani et al., 2012 8 aMCI 66 \pm 6 8/0 1 -2 R_1 Cotelli et al., 2011 10 AD 76 \pm 5 NA NA R_2 Cotelli et al., 2013 10 AD 75 \pm 6 NA R_2 R_2 Cotelli et al., 2008, mAD 12 mild AD 75 \pm 6 NA R_2 R_2 Cotelli et al., 2008, mAD 12 moderate to severe AD 78 \pm 6 NA R_2 R_2 Sole-Padulles et al., 2006 39 MCI >50 1/28 >1 year R_3	Drumond Marra et al., 2015	34	MCI	60 - 74	12/22	NA	RAN_PA_DB_SC
Ahmed et al., 2012 45 Probable AD 68 ± 6 $16/29$ NA R_1 Turriziani et al., 2012 8 aMCI 66 ± 6 $8/0$ $1-2$ R_1 Turriziani et al., 2012 8 aMCI 66 ± 6 $8/0$ $1-2$ R_1 Cotelli et al., 2011 10 AD 75 ± 6 NA R_2 R_1 Cotelli et al., 2008, mAD 12 mild AD 75 ± 6 NA R_2 R_2 Cotelli et al., 2008, mAD 12 mild AD 75 ± 6 NA R_2 R_2 Sole-Padulles et al., 2006 39 aMCI >50 128 >1 year R_2	Eliasova et al., 2014	10	7 Mild AD, 3 aMCI	75 ± 8	6/4	~4	RAN_CO_SC
Turriziani et al., 2012 8 aMCI 66 ± 6 8/0 $1-2$ R_1 Cotelli et al., 2011 10 AD 76 ± 5 NA NA R_2 Cotelli et al., 2008, mAD 12 mild AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mAD 12 mild AD 75 ± 6 NA NA R_2 Cotelli et al., 2008, mSAD 12 moderate to severe AD 78 ± 6 NA NA R_2 Sole-Padulles et al., 2006 39 aMCI >50 1/28 >1 year R_2	Ahmed et al., 2012	45	Probable AD	68 ± 6	16/29	NA	RAN_PA_SB_SC
Cotelli et al., 201110AD 76 ± 5 NANARJCotelli et al., 2008, mAD12mild AD 75 ± 6 NARARJCotelli et al., 2008, mSAD12moderate to severe AD 78 ± 6 NANARJSole-Padulles et al., 200639aMCI>501128>1 yearRJ	Turriziani et al., 2012	8	aMCI	66 ± 6	8/0	1–2	RAN_CO_SC
Cotelli et al., 2008, mAD12mild AD 75 ± 6 NANARJCotelli et al., 2008, msAD12moderate to severe AD 78 ± 6 NANARJSole-Padulles et al., 200639aMCI>50 $11/28$ >1 yearRJ	Cotelli et al., 2011	10	AD	76 ± 5	NA	NA	RAN_PA_SB_SC
Cotelli et al., 2008, msAD12moderate to severe AD 78 ± 6 NAR/Sole-Padulles et al., 200639aMCI>50 1128 >1 yearR/	Cotelli et al., 2008, mAD	12	mild AD	75 ± 6	NA	NA	RAN_CO_SC
Sole-Padulles et al., 2006 39 aMCI > 50 1½8 >1 year R/	Cotelli et al., 2008, msAD	12	moderate to severe AD	78 ± 6	NA	NA	RAN_CO_SC
	Sole-Padulles et al., 2006	39	aMCI	> 50	11/28	>1 year	RAN_PA_DB_SC

Note. AD = Alzheimer's disease; aMCI = amnestic mild cognitive impairment; CO = cross-over; DB = double-blind; DD = Disease duration; mAD = mild AD; ms AD = moderate to severe AD; MCI = mild cognitive impairment; NA = not available; PA = parallel; RAN = randomized; SB = single-blind; SC = sham-controlled.

^aData from enrolled participants

Neurobiol Aging. Author manuscript; available in PMC 2021 February 01.

 $b_{\rm Participants}$ who completed the rTMS sessions and the 1-hour after-rTMS evaluation

cMedian disease duration

 $d_{
m Data}$ analyzed

Table 2.

Characteristics of included studies - rTMS parameters

Source	rTMS site	rTMS frequency	Intensity	No. of pulses ^a	Treatment duration	Sham rTMS
Padala et al., 2018	L-DLPFC	10 Hz	120% RMT	$30000 (3000 \times 10)$	2 weeks	Tilted coil
Koch et al., 2018	L parietal region (precuneus)	20 Hz	100% RMT	16000~(1600 imes 10)	1 weeks	Sham coil
Zhao et al., 2017	Bilateral parietal region and posterior temporal areas	20 Hz	NA	$120000 (4000 \times 30)$	6 weeks	Inactive coil with sound
Anderkova et al., 2015	R IFG and R STG	10 Hz	90% RMT	2250~(2250 imes 1)	1 session for each target	Stimulating vertex
Wu et al., 2015	L DLPFC	20 Hz	80% RMT	24000 (1200 imes 20)	4 weeks	Tilted coil
Rutherford et al., 2015	Bilateral DLPFC	20 Hz	90%–100% RMT	26000 (2000 imes 13)	4 weeks	Wooden block
Drumond Marra et al., 2015	L DLPFC	10 Hz	110% RMT	20000~(2000 imes 10)	2 weeks	Sham coil
Eliasova et al., 2014	R IFG	10 Hz	90% RMT	2250 (2250 $\times 1$)	1 day	Stimulating vertex
Ahmed et al., 2012, 20Hz	Bilateral DLPFC	20 Hz	90% RMT	$10000 (2000 \times 5)$	5 days	Elevated coil
Anmed et al., 2012, 1HZ	Bilateral DLPFC	1 Hz	100% RMT	$10000 (2000 \times 5)$	5 days	Elevated coil
Turriziani et al., 2012	L DLPFC	1 Hz	90% RMT	600~(600 imes 1)	1 day	Tilted coil
	R DLPFC	1 Hz	90% RMT	600~(600 imes 1)	1 day	Tilted coil
Cotelli et al., 2008, mAD	L and R DLPFC	20 Hz	90% RMT	NA	1 session for each target	Stimulating vertex
CoteIII et al., 2008, IIISAD	L and R DLPFC	20 Hz	90% RMT	NA	1 session for each target	Stimulating vertex
Cotelli et al., 2011	L DLPFC	20 Hz	100% RMT	20000 (2000 imes 10)	2 weeks	Sham coil
Sole-Padulles et al., 2006	L DLPFC	5 Hz	80% RMT	500~(500 imes 1)	1 day	Tilted coil
<i>Mote</i> AMT – active motor three	hold: M1 – mimery motor cortex – m dD – mild A14	aimer's disease: ms A	D – mild to severe A	Theimer's diseases SM	A – sundementary motor ar	aa: DI DEC – dorsolateral

Neurobiol Aging. Author manuscript; available in PMC 2021 February 01.

Note. AMT = active motor threshold; M1 = primary motor cortex, mAD = mild A1 prefrontal cortex; PMd = dorsal premotor cortex; RMT = resting motor threshold

 2 Total number of pulses (number of pulses per session x number of sessions).

Author Manuscript

Table 3.

Characteristics of included studies - outcome measurements

Source	Cognitive measures used for the estimation of effect size (Type of cognitive domain)	Post-rTMS evaluation	Seizure due to rTMS
Padala et al., 2018	MMSE (General cognitive function) and TMT (Executive function)	1 hour after	No
Koch et al., 2018	Delayed recall of the RAVLT (Memory) and MMSE (General cognitive function)	Immediately after	No
Zhao et al., 2017	ADAS-cog (General cognitive function) and MMSE (General cognitive function)	Immediately after and 6 weeks after	No
Anderkova et al., 2015	Stroop color-word task (Executive function) and TMT	1 hour after	No
Wu et al., 2015	ADAS-cog (General cognitive function)	Immediately after	No
Rutherford et al., 2015	Word-image association (Memory), ADAS-cog (General cognitive function), and associative memory (Memory)	Immediately after	No
Drumond Marra et al., 2015	RBMT (Memory), letter-number sequencing test (Executive function), and TMT-B (Executive function)	Immediately after and 1 month after	ON
Eliasova et al., 2014	TMT-A, TMT-B (Executive function) and Stroop task (Executive function)	Immediately after	No
Ahmed et al., 2012, 20Hz	MMSE (General cognitive function)	Immediately after, 1 month after, and 3 months after	oN
Ahmed et al., 2012, 1Hz	MMSE (General cognitive function)	Immediately after, 1 month after, and 3 months after	No
Turriziani et al., 2012, LDLPFC	Recognition memory test (Memory)	Immediately after	No
Turriziani et al., 2012, RDLPFC	Recognition memory test (Memory)	Immediately after	oN
Cotelli et al., 2008, mAD	Action naming and object naming (Language)	Immediately after	No
Cotelli et al., 2008, msAD	Action naming and object naming (Language)	Immediately after	No
Cotelli et al., 2011	SC-BADA (Language) and MMSE (General cognitive function)	Immediately after	No
Sole-Padulles et al., 2006	Associative memory (Memory)	Immediately after	No

Neurobiol Aging. Author manuscript; available in PMC 2021 February 01.

Abbreviations. ADAS-cog = AD assessment scale cognitive subscale; MMSE = mini-mental status evaluation; RAVLT = Rey auditory verbal learning test; RBMT = Rivermead behavioral memory test; SC-BADA = Battery for analysis of aphasic deficits; TMT = trail making task. Note. Cognitive measures listed in this table were included in the sensitivity analysis. Cognitive measures in bold were the primary outcome measures used to derive the overall effect size. The italicized tasks were included in the sensitivity analysis.