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are involved in various neuropsychiatric diseases. Therefore, mod-
ification of such pathological plasticity, or enhancing beneficial plas-
ticity in these diseases, might be an interesting new therapeutic
option.

Alterations of synaptic connections as a basis of cognitive func-
tions were first proposed by Hebb (1949), and demonstrated by
Bliss and Lomo (1973). Fast rhythmic stimulation of the hippocam-
pus enhances (long-term potentiation (LTP)), and slow rhythmic
stimulation decreases (long term depression (LTD)) excitability for
hours (Dunwiddie and Lynch, 1978). Both, LTP and LTD, can be in-
duced at glutamatergic, GABAergic, dopaminergic, and other synap-
ses, and in virtually all areas of the central nervous system. Apart
from having been shown in slice preparations, they are also present
in in vivo animal models (for an overview see Malenka and Bear
(2004)). Their functional relevance was demonstrated by motor
learning in rats (Rioult-Pedotti et al., 1998, 2000) and in sensory,
and more complex memory formation (Feldman, 2009). Consequently,
pathological alterations of plasticity are suggested to influence neuro-
psychiatric diseases, including, but not restricted to, learning and mem-
ory deficits.

In analogy to animal studies, plasticity can be induced or modified
in the human central nervous system by non-invasive brain stimula-
tion (NIBS) approaches. Numerous stimulation protocols have been
developed which allow the induction of long-lasting cortical excit-
ability alterations. Transcranial direct current stimulation (tDCS) is
one of these stimulation protocols. It induces plasticity via generation
of a sub-threshold, stimulation polarity-dependent alteration of mem-
brane potentials modifying spontaneous discharge rates. This results
in enhanced/reduced cortical excitability during stimulation, which
can outlast the stimulation for over 1 h, if tDCS is performed in the
range of minutes (Kuo et al., 2008b; Nitsche and Paulus, 2000, 2001;
Nitsche et al., 2003c). The resulting plasticity involves glutamatergic
synapses, and is calcium-dependent (Nitsche et al., 2003a, 2004b;
Stefan et al., 2002; Wolters et al., 2003).

Plasticity induction with NIBS has been shown to have functional
effects. Learning in different modalities (Floel et al., 2008; Kincses et
al., 2004; Nitsche et al., 2003d), working memory performance (Fregni
et al,, 2005a), as well as other cognitive processes are modulated by
NIBS (Guse et al., 2010; Kuo and Nitsche, 2012). These respective func-
tions are pathologically altered in many neuropsychiatric diseases,
and in some instances, associated modifications of plasticity have
been identified. Therefore, counter-acting these pathological alter-
ations of plasticity by NIBS is a potentially interesting new therapeutic
venue (Nitsche et al., 2012).

DC stimulation was systematically studied in the 1960s as a tool
to induce neuroplastic alterations of cortical excitability in animal
models (Bindman et al., 1964; Nitsche et al., 2003b). Stimulation
for 10 min induces prolonged and stimulation polarity-dependent
alterations of cortical activity for hours (Bindman et al., 1964).
Later it was probed as a therapeutic tool mainly for depression.
Due to mixed results at that time, when compared to pharmacother-
apy, it was not implemented into clinical routine treatment (for
overviews see Lolas, 1977; Nitsche et al., 2003b, 2009a). In the last
years however, new stimulation protocols were developed mainly
based not only on reliable modulation of motor cortex excitability,
but also on functional effects in healthy subjects (Nitsche et al.,
2003b, 2008). Consequently, tDCS was re-evaluated for the treat-
ment of neuropsychiatric diseases, with promising results in various
pilot studies.

This review gives an overview about the state of the art of applica-
tion of tDCS in psychiatric diseases with the addition of pain, and tinni-
tus, which include neurological as well as psychiatric components,
including an outlook, in which options to enhance the efficacy of stim-
ulation in future studies are discussed (Table 2). Application of tDCS for
treatment of neurological diseases will be covered by another review in
this issue (Floel et al., in press).

Therapeutic application of tDCS
Pain

Different interwoven cortico-subcortical pain-related networks
cover perceptual, affective, and vegetative aspects of pain processing.
The main components of the perceptual pain processing network are
the spinothalamic tract, the lateral thalamus, the somatosensory
areas, and the posterior insula. Pain-associated affections have been
related to the anterior insular, and cingulate cortices, as well as the
prefrontal areas. Vegetative, and neuroendocrine effects of pain per-
ception are closely linked to various subcortical regions (Zaghi et al.,
2009). Neuroplastic alterations of connectivity between these areas
might contribute to chronification of pain.

Cortical stimulation to reduce central pain has been shown to be
effective (Zaghi et al,, 2009). The two major targets are the primary
motor, and the dorsolateral prefrontal cortex (Marlow et al., 2012).
Primary motor cortex stimulation interferes with perceptual process-
ing of pain via suppressing lateral thalamic activity (Canavero and
Bonicalzi, 2007; Garcia-Larrea et al., 2006; Nizard et al., 2012; Plow
et al., 2012b), while stimulation of the dorsolateral prefrontal cortex
modulates primarily the affective reaction to painful experiences. In-
vasive motor cortex stimulation is an established method for pain
treatment (Tsubokawa et al., 1991) and its replacement by non-
invasive tDCS is one of the most promising methods of NIBS in this
type of therapy.

With the exception of one study, in which a single-blinded approach
was chosen, all studies in which the effect of tDCS was applied for pain
reduction were double-blinded, which is of special importance, given
the relatively large placebo effects related to pain treatment (for an
overview, see Table 1). Anodal M1 tDCS for five consecutive days
resulted in a reduction of pain ratings after spinal cord injury for at
least 24 h after stimulation (Fregni et al.,, 2006a). A similar effect was
described for chronic pelvic pain (Fenton et al., 2009), chronic neuro-
pathic pain in multiple sclerosis (Mori et al., 2010), and pain of different
origin (Antal et al., 2010). In the two latter studies, pain reduction after
5 days of daily stimulation lasted for several weeks. Anodal tDCS over
M1 improved also pain ratings in fibromyalgia (Fregni et al., 2006c;
Riberto et al., 2011; Valle et al., 2009). Interestingly, anodal tDCS over
M1 combined with transcutaneous electrical stimulation (TENS) for
treating chronic neurogenic pain of the upper limb had better effects
than tDCS alone (Boggio et al.,, 2009a). It might therefore be speculated
that combined stimulation approaches affecting different modalities are
suited to optimize efficacy of stimulation. For prefrontal stimulation,
negative results after five sessions of stimulation (Fregni et al., 2006d)
are opposed to a positive impact of 10 daily (Valle et al., 2009), or week-
ly sessions on pain ratings (Riberto et al., 2011), and another study, in
which a single session of orbitofrontal tDCS was conducted for pain re-
duction in fibromyalgia (Mendonca et al., 2011). Moreover, combined
anodal left prefrontal and cathodal tDCS of the gut representation area
of the right somatosensory cortex reduced analgetic drug consumption,
sleep disturbance, and ratings of acute pain after ERCP (Borckardt et al.,
2011).

In migraine, whose pathophysiology differs from that of other pain
syndromes,10 sessions of motor cortex anodal tDCS over four weeks
resulted in a marginal improvement of pain evolving with a delay of
about 120 days (Dasilva et al., 2012). Although anodal M1 tDCS for
20 consecutive days generated a reduced attack frequency, drug con-
sumption, and pain intensity in another study (Auvichayapat et al.,
2012), anodal M1 tDCS does not appear conceptually as well suited
as in chronic pain. An alternative concept pursues the attenuation of
visual cortex hyperexcitability by inhibitory cathodal tDCS in mi-
graine patients both during and between attacks (Antal et al., 2005;
Chadaide et al., 2007), which was applied over the occipital cortex
(15 sessions over 6 weeks), and resulted in a reduction of the inten-
sity of migraine attacks (Antal et al., 2011).
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Table 1
tDCS for pain treatment.
Design Patients Stimulation protocol Outcome
Studies Placebo-  Blinding Polarity Stimulation Reference Current  Electrode size Duration (min) Current Effects Side-effects
controlled electrode electrode strength  (cm?) density
position position (mA) (mA/cm?)
Fregni et al. Yes Double  Traumatic spinal A/S C3/C4 Contralateral 2 35 20 min 0.06 Pain reduction, cumulative None
(2006a) cord injury orbit (5 consecutive days) effect, effects present for at
least 24 h
Fregni et al. Yes Double  Fibromyalgia A/S C3/F3 Contralateral 2 35 20 min 0.06 Pain reduction after motor Redness of skin, itching,
(2006¢) orbit (5 consecutive days) cortex stimulation, significant sleepiness, headache
3 weeks after stimulation
Valle et al. Yes Double  Fibromyalgia A/S C3/F3 Contralateral 2 35 20 min 0.06 Pain reduction after motor Redness of skin, tingling
(2009) orbit (10 consecutive days) cortex, and prefrontal
stimulation, significant 6
weeks after motor cortex
stimulation
Fentonetal. Yes Double  Chronic pelvic pain ~ A/S C3/C4 Contralateral 1 35 20 min 0.04 Significant reduction of pain Sleepiness, reddening and
(2009) orbit (2 consecutive days) numbness under electrode
Boggio etal.  Yes Double  Chronic neurogenic ~ A/S C3/C4 Contralateral 2 35 30 0.06 Significant reduction of pain Headache
(2009a) pain of upper limb orbit by real tDCS, larger in
combination with TENS
Mori et al. Yes Double  Chronic neuropathic A/S C3/Cc4 Contralateral 2 35 20 (5 consecutive 0.06 Anodal tDCS reduced pain for None
(2010) pain in multiple orbit days) up to 4 weeks after stimulation
sclerosis
Antal et al. Yes Double  Chronic pain of A/S Motor cortex  Contralateral 1 16 (motor cortex), 20 (5 consecutive 0.06 Pain reduction after anodal Tingling, fatigue, headache,
(2010) different origin orbit 50 (return) days) tDCS for 3 to four weeks sleep disturbance
after tDCS
Antal et al. Yes Double  Migraine C/S 0z Cz 1 35 15 (3 times per 0.04 Pain intensity reduced Itching, tingling, fatigue,
(2011) week over 6 weeks) headache
Borckardt Yes Double  Post-ERCP pain A/S A: left n.a. 2 16 20 0.125 Less hydromorphine use, Tingling, itching under
etal. (2011) prefrontal less sleep disturbance, electrodes
C: gut less throbbing pain
representation
right sensory
cortex
Mendonca Yes Double  Fibromyalgia A/C/S  Supra-orbital, Shoulder 2 16 (stimulation); 20 0.125 Pain reduction by cathodal Tingling
etal. (2011) M1 80 (return) and anodal supraorbital tDCS
Riberto et al. ~ Yes Double  Fibromyalgia A/S c3 Contralateral 2 35 20 (once weekly 0.06 Reduced pain after anodal None
(2011) orbit for 10 weeks) tDCS
Dasilvaetal.  Yes Single Chronic migraine A/S Motor cortex  Contralateral 2 35 20 (10 sessions 0.06 Reduced pain after anodal Tingling, skin redness,
(2012) orbit over 4 weeks) tDCS evolving with a delay sleepiness
(120 days after tDCS)
Auvichayapat  Yes Double  Chronic migraine A/S c3 Contralateral 2 35 20 (20 consecutive 0.06 Attack frequency, pain intensity ~ Tingling, headache, reddening
etal. (2012) orbit days) and medication reduced under electrode, first degree

skin burn, tiredness

Shown are studies dedicated to treatment of central pain of different origin. Patient, and study characteristics, details of the stimulation protocols as well as effects of stimulation, including side effects, are shown. A = anodal tDCS, C = cathodal

tDCS; TENS = transcutaneous electrical nerve stimulation; S = sham tDCS. Stimulation target areas are described according to the international 10-20 system.
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Table 2
tDCS for treatment of tinnitus.
Design Patients Stimulation protocol Outcome
Studies Placebo- Blinding Polarity ~ Stimulation Reference Current  Electrode  Duration (min) Current Effects Side-effects
controlled electrode position electrode strength  size (cm?) density
position (mA) (mA/cm?)
Fregni et al. (2006d) Yes Partially ~ Chronic unilateral A/C/S Left temporoparietal ~ Contralateral 1 35 3 0.04 Anodal tDCS induces short- None
area orbit lasting reduction of tinnitus
Vanneste et al. (2010) No Open Chronic unilateral A/C F3/F4 n.a. 1.5 35 20 0.04 Right anode/left cathode Not reported
and bilateral reduces tinnitus intensity,
and tinnitus-related distress
Vanneste et al. (2012) No Open Chronic unilateral A/C A right, C left n.a. 1.5 35 20 0.04 Higher gamma band activity =~ Not reported
and bilateral in right auditory cortices, and
parahippocampus, increased
functional connectivity in
responders
Garin et al. (2011) Yes Double Chronic, unilateral ~ A/C/S Left temporoparietal ~ Between T4 1 35 (left); 20 0.04 Reduction of tinnitus In some patients
and bilateral area and F8 50 (right) intensity immediately after tinnitus worsening
anodal tDCS, heterogeneous after cathodal tDCS
long-lasting effects
Frank et al. (2012) No Open Chronic, unilateral ~ A/C A right, C left n.a. 1.5 n.a. 30 (6 sessions, n.a. Reduced loudness, Skin lesions,
and bilateral 2 times per week) unpleasantness, and burning, headache
discomfort
Faber et al. (2012) Yes Double Chronic bilateral A/C Left/right DLPFC Contralateral 1.5 35 20 (6 sessions, 0.04 Reduced tinnitus annoyance ~ None
DLPFC 2 times per week) by both tDCS protocols
Shekhawat et al. (2013) No Open Chronic, unilateral A Left temporoparietal ~ Contralateral 1.2 35 (left); 10, 15, 20 0.04-0.06 Intensity-, and duration- Headache
and bilateral area frontal 50 (right) dependent effects, 2 mA

20 min most effective

=}

Shown are studies dedicated to treatment of tinnitus. Study characteristics, details of the stimulation protocols as well as effects of stimulation, including side effects, are shown. A = anodal tDCS; C = cathodal tDCS; S = sham tDCS.
Stimulation target areas are described according to the international 10-20 system.
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In general, tDCS, and here most clearly anodal tDCS over the primary
motor cortex, seems well suited to reduce pain. With regard to stimula-
tion intensity, and repetition rate, a diversity of protocols has been
explored, but approaches in which these parameters are titrated
systematically are missing. However, in patients suffering from fibro-
myalgia, stimulation over 10 days seems to be more effective than stim-
ulation for 5 consecutive days (Fregni et al., 2006d; Valle et al., 2009),
which claims for enhanced efficacy of intensified protocols. Moreover,
combination of stimulation approaches such as tDCS and TENS might
be a promising approach. Furthermore it seems plausible that optimal
stimulation areas differ between syndromes, as suggested by the mi-
graine studies. Interestingly, side effects, if present at all, were minor,
which is remarkable in this patient group. Although most of the studies
were double-blinded and sham-controlled, the rate of placebo effects
is relatively high in pain studies. Also recently the effective blinding
of 2 mA studies was challenged (O'Connell et al., 2012). Therefore,
despite the positive effects of most of the above-mentioned studies,
there is a need for rigorously double-blinded studies in this field. In
the ClinicalTrials.gov (http://clinicaltrials.gov/) registry, currently 11
active studies are listed, which encompass the comparison of different
tDCS repetition rates (NCT01599767), the efficacy of anodal tDCS with
that of rTMS (NCT01800136), the efficacy of tDCS on other pain syn-
dromes, such as corneal pain, and pain after burn injury (NCT01575002,
NCT01795079), and the superiority of a combination of tDCS with other
stimulation approaches, such as electroacupuncture (NCT01747070), or
transcranial ultrasound (NCT01404052). These studies might help to
increase the efficacy of tDCS, and to broaden its application for pain
treatment.

Tinnitus

The pathophysiological basis of tinnitus is still not sufficiently clear.
One line of concepts argues for a deafferentation-induced compensato-
ry spontaneous hyperactivity of auditory cortices within certain fre-
quency representations, leading to maladaptive plasticity. The left
temporoparietal area seems to be specifically involved, and disruption
of its activity has been shown to reduce tinnitus (Plewnia, 2011). There-
fore, neuromodulation via tDCS might be suited to alter this pathologi-
cal pattern of cortical activity. In two double-blinded, sham-controlled
studies it was indeed shown that a single session of anodal tDCS of
this area results in a short-lasting reduction of symptoms in patients
suffering from tinnitus, whereas cathodal stimulation had no effects
(Fregni et al, 2006d; Garin et al, 2011). At first sight, it sounds
counter-intuitive that excitability-enhancing stimulation should reduce
tinnitus in case of spontaneous hyperactivity of this area. However, this
might be caused by stimulation-induced mimicking of physiological ac-
tivation of a broader range of sound-representing areas, which could re-
duce pathological activity by induction of cortical noise. Beyond this
area, the prefrontal cortex seems to be involved in tinnitus symptoms
(Vanneste and De Ridder, 2012), and may control for attentional or an-
noyance aspects. In accordance, bilateral prefrontal tDCS reduced tinni-
tus annoyance, but interestingly not intensity, independent from
stimulation polarity, in another double-blinded sham-controlled study
(Faber et al., 2012). In these studies, primarily acute effects of tDCS on
tinnitus were explored, or obtained, thus they allow no conclusions
about a clinically relevant prolonged impact of tDCS. A couple of open
studies could replicate these findings for right anodal/left cathodal
stimulation of the dorsolateral prefrontal cortex (Frank et al., 2012;
Vanneste et al.,, 2010). In the only study, which explored the impact of
tDCS intensity and duration on the efficacy of stimulation, the longest
and strongest stimulation tested (2 mA for 20 min) had the best effica-
cy (Shekhawat et al., 2013). Relative short breaks between stimulation
sessions in this study require further investigation of a possible impact
of cumulative stimulation effects on increased efficacy (Monte-Silva et
al., in press). Taken together, knowledge about clinically meaningful ef-
fects on the impact of tDCS on tinnitus, which requires double-blinded

sham-controlled studies including longer observation periods following
stimulation protocols aimed for the induction of those long-term ef-
fects, i.e. repetitive stimulation, is scarce. One currently ongoing study,
which is suited to solve this problem at least partially, because it in-
cludes repetitive tDCS for the treatment of tinnitus, and prolonged ob-
servation periods, is however listed in the ClinicalTrials.gov registry
(NCT01575496).

Psychiatric diseases

The cortical allocation of brain areas involved in psychiatric diseases
provides a better accessibility for transcranial stimulation than subcorti-
cal neurological diseases such as Parkinson's disease. Abnormal brain
activity, plasticity and functional connectivity have been identified as
probable underlying causes in many psychiatric diseases (Knable et al.,
2002; Spedding et al,, 2003; Uhlhaas and Singer, 2010). The majority of
therapeutic options remain pharmacological to date. NIBS including
tDCS has been recently introduced as adjuvant tool for the treatment of
psychiatric disorders, especially for refractory or treatment-resistant con-
ditions. Most studies conducted so far are dedicated to the treatment of
depression. One reason for this might be that reduced activity of the dor-
solateral prefrontal cortex (DLPFC), which is located at the convexity of
the brain, provides optimal prerequisites for successful NIBS (Fitzgerald
et al,, 2006). Therapeutic options for schizophrenia, addiction, and de-
mentia are more difficult due to a lack of similar simple location targets.

Depression

In addition to left hemispheric hypoactivity, right hemispheric
hyper-activation is suggested to be a key substrate of depression. More-
over, dysfunctional plasticity including deficient LTP seems to play
a role (Normann et al., 2007; Spedding et al., 2003). In accordance,
serotonin reuptake inhibitors enhance LTP-like plasticity in healthy
humans, and re-establish LTP-like plasticity in patients suffering from
major depression (Nitsche et al., 2009a; Normann et al., 2007). There-
fore, therapeutic strategies of NIBS to treat depression have focused
on enhancing left DLPFC activity and LTP-like plasticity, and/or decreas-
ing right DLPFC activity (Schonfeldt-Lecuona et al., 2010).

The application of tDCS for the treatment of depression can be
traced back to the 1960s. Bilateral anodal prefrontal stimulation was
conducted in those trials with the return electrode positioned at the
knee. Since physiological effects of this stimulation protocol were
not explored, it is unknown what kind of alteration of brain excitabil-
ity was induced. Clinical effects of these studies were mixed (for de-
tails see Lolas, 1977; Nitsche et al., 2009a).

With regard to “modern” tDCS protocols, excitability-enhancing
anodal tDCS of the left DLPFC with the return electrode positioned
over the contralateral orbit has turned out to be efficient to ameliorate

clinical symptoms in major depression. In a double-blinded, sham con- :

trolled study, anodal tDCS for five consecutive days in newly diagnosed
patients resulted in a significant improvement of clinical symptoms
(Fregni et al., 2006b). Increase of stimulation intensity to 2 mA, and
number of sessions up to 15 resulted in clinical effects stable for up to
one month after tDCS in two other double-blinded sham-controlled
studies (Boggio et al., 2008a; Loo et al.,, 2012), and in an open study
performed in HIV-patients suffering from depression (Knotkova et al,
2012). The magnitude of these effects was similar to the treatment
with 20 mg fluoxetine, but evolved earlier than the pharmacological in-

tervention (Rigonatti et al., 2008). In contrast, anodal prefrontal tDCS :

was not superior as compared to placebo stimulation in two other trials,
where somewhat weaker and less frequent stimulation was conducted
and more severely affected patients were treated (Loo et al., 2010; Palm
etal, 2012) (see Table 3).

Bifrontal tDCS with the anode on the left and the cathode on the :

right DLPFC in order to reestablish the balance between right and left

DLPFC was not effective in another double-blinded sham-controlled :

study (Blumberger et al., 2012). Patients with greater disease severity
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Table 3
tDCS for the treatment of psychiatric diseases.
Design Patients Stimulation protocol Outcome
Studies Placebo-  Blinding Polarity Stimulation Reference Current  Electrode Duration Session(s) Current Effects Side-effects
controlled electrode electrode strength  size (cm?)  (min) density
position position (mA) (mA/cm?)
Depression
Fregni et al. (2006b)  Yes Double MD A/S L DLPFC Contralateral 1 35 20 Daily session for 5 0.03 Improvement of None
orbit alternate days symptoms
Boggio et al. (2008a)  Yes Double MD A/S L DLPFC or Contralateral 2 35 20 5 daily sessions/ 0.06 Improvement of HDRS ~ Headache, itching,
occipital orbit week for 2 weeks with DLPFC tDCS for up redness of skin
(active control) to 1 month
Rigonatti et al. (2008) Yes Double MD A/S F3 Contralateral 2 35 20 daily session for 0.06 Improvement of Not reported
orbit 5 days symptoms, similar to
fluoxetine
Ferrucci et al. (2009) No Open MD with A L DLPFC R DLPFC 2 35 20 2 sessions/day for  0.06 Improvement of HDRS ~ None
treatment 5 days and BDI, and subjective
resistance mood ratings
Loo et al. (2010) Yes Double MD A/S L DLPFC Contralateral 1 35 20 Daily session for 5 0.06 Improvement of Skin redness, itching,
orbit alternate days symptoms in both tingling, headache,
active and sham groups ringing in the ear,
altered vision, tiredness,
euphoria, hypomania,
nausea, disorientation,
anxiety, insomnia,
swallowing problems
Brunoni et al. (2011) No Open MD and BPD A L DLPFC R DLPFC 2 35 20 2 sessions/day for  0.06 Both groups show None
5 days reduction in HDRS and
BDI for up to 1 month
Dell'Osso et al. (2012) No Open MD with A L DLPFC R DLPFC 2 35 20 2 sessions/day for  0.06 13-30% of patients Redness of skin under
treatment 5 days showed reduction of electrodes
resistance HDRS and remission up
to 1-week follow-up
Martin et al. (2011) No Open MD (who showed A L DLPFC R upper arm 2 35 20 5 daily session/ 0.06 Greater treatment Not reported
inadequate week for 4 weeks response compared to
response after bifrontal tDCS
bifrontal tDCS)
Palm et al. (2012) Yes Double  MD with A/S L DLPFC Contralateral 1-2 35 20 5 daily session/ 0.03-0.06 No significant Headache, itching under
treatment orbit week for 2 weeks difference in electrodes
resistance depression score, but
improvement in
subjective mood
ratings
Loo et al. (2012) Yes Double/ MD and BPD A/S L DLPFC F8 2 35 20 5 daily session/ 0.06 Improvement in mood  One patient with bipolar
open week for 3 weeks disorder became
followed by hypomanic after active
additional 3 weeks tDCS
active tDCS
Blumberger et al. Yes Double  MD with A/S F3 F4 2 35 20 5 daily session/ 0.06 No difference in Tingling, headache
(2012) treatment week for 3 weeks remission rate between
resistance active and sham group
Martin et al. (2013) No Open MD A L DLPFC Rupperarmor 2 35 20 Once a week for 0.06 Prevention of relapse  Tingling/itching, skin

Contralateral
orbit

3 months, and
then once every
other week for
3 months

for up to 6 months

redness, dizziness,
headache, fatigue,
nausea, blurred vision
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Brunoni et al. (2012)

Brunoni et al. (2013)

Knotkova et al. (2012)

Schizophrenia
Brunelin et al. (2012)

Addiction
Boggio et al. (2010b)

Boggio et al. (2008b)

Fregni et al. (2008)

Boggio et al. (2009¢)

Dementia
Ferrucci et al. (2008)

35

Boggio et al. (2009b)

Single

Boggio et al. (2012)

Huey et al. (2007)

No

Yes

No

Yes

No

Yes

No

No

Yes

20

No

0.06

Yes

Yes

Open

Double

Open

Double

Single

Double

Double

Double

Double

Single

Double

Double

Double

MD and BPD

MD

HIV-MD

SCZ with auditory
hallucination

Marijuana (after
24 h abstinence)

Alcohol (after
detoxification)

Nicotine

Nicotine

AD

0.06

AD

Improvement of
visual recognition
memory

AD

FTD

A

A/S

A/C/S

A/C/S

A/C/S

A/S

A/C/S

None

A/S

A/S

F3

F3

F3

Left DLPFC

F3/F4

F3/F4

F3/F4

F3

Improvement
of recognition
memory with
anodal tDCS;
worsening with
cathodal

R DLPFC

Bilateral
temporal
cortex

F3

F4 2

F4 2

Contralateral 2
orbit

Left 2
tempo-parietal
cortex

F4/F3 2
F4/F3 2
F4/F3 2
F4 2

Itching under
electrodes

Right deltoid 2
muscle

Contralateral 2
orbit

35

25

35

25

35

35

35—active/
100—return

35—active/
100—return

35

25

20

30

20

20

10

20

20

20

30

40

2 sessions/day for
5 days

10 daily session,
and 2 sessions
every other week

Once daily for 10
consecutive
weekdays

2 sessions/day for
5 days

Single

Single

Single

Daily session for
5 days

temporo-parietal
cortex

temporo-parietal
cortex

Daily session for
5 days

Single session

0.06

0.08

0.06

0.08

0.06

0.06

0.06

0.06

0.06

0.08

Improvement in BDI
and HDRS
Improvement in
MADRS, better effect of
tDCS/sertraline combi-
nation than tDCS or
sertraline alone
Improvement in HDRS
and subjective ratings

- reduction of auditory
hallucinations for up
to 3 months

- improvement of
positive/negative
symptoms

Reduction of craving
after F4 anodal/F3
cathodal tDCS
Reduction of craving by
both active tDCS
conditions

Reduction of
cue-induced craving
after both active tDCS
conditions

Reduction of craving
and cigarette
consumption

Contralateral orbit

35

Improvement of visual
recognition memory for
four weeks after
stimulation

No effect on verbal
fluency

None

Skin redness, hypomania
or mania in 7 patients, 5
under combined
treatment, one under
tDCS, and sertraline only
None

Tingling/itching

None

Scalp burning, headache
and local itching, no
difference between
groups

Scalp burning, headache
and local itching; no
difference between real
and sham tDCS

30

None

Not reported

Shown are studies dedicated to treatment of psychiatric diseases. Patient, and study characteristics, details of the stimulation protocols as well as effects of stimulation, including side effects, are shown. A = anodal tDCS; BDI = Beck
depression inventory; BPD = bipolar disorder; C = cathodal tDCS; DLPFC = dorsolateral prefrontal cortex; HRDS = Hamilton depression rating scale; MD = major depression; S = sham tDCS; SCZ = schizophrenia. Stimulation target

areas are described according to the international 10-20 system.
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and numerous patients under benzodiazepines, which might have re-
duced the efficacy of tDCS (Nitsche et al., 2004c), may have contributed
to the negative result. A recently published large-scale double-blinded
sham-controlled study, in which bilateral stimulation of the dorsolater-
al prefrontal cortex was conducted, compared the effects of tDCS, ser-
traline, and combination of both agents in 120 patients suffering from
unipolar depression. 2 mA stimulation for 30 min was performed for
10 days, and then repeated every other week once. In this study, tDCS
alone improved depression ratings significantly, and to a similar extent
as antidepressant medication. Interestingly, combination of tDCS and
sertraline had larger effects on the respective symptoms than each of
the interventions alone (Brunoni et al., 2013). Additionally, some
open label studies applying bifrontal tDCS were clinically effective
(Brunoni et al., 2011, 2012; Dell'Osso et al., 2012). Moving the right
frontal return electrode to an extra-cephalic position showed a better
initial treatment response in patients resistant to bifrontal stimulation
(Martin et al., 2011). Furthermore, additional “boosting sessions”
showed remission rates of about 80% after 3, and 50% after 6 months
with weekly or second-weekly extra sessions after initial daily tDCS
(Martin et al., 2013).

With regard to manic symptoms in bipolar disorder, which might be
associated with a converse pattern of prefrontal activation disbalance,
i.e. right hypo- and left hyperactivity, anodal tDCS over the right
DLPFC has been demonstrated to induce fast alleviation of acute symp-
toms in one study (Schestatsky et al., in press).

In general, stimulation in most studies was applied with current in-
tensities between 1 and 2 mA and duration of 20 min. However, a num-
ber of treatment sessions, the interval between sessions, electrode
positions, and disease severity vary considerably between these studies.
So far most studies have shown a potential of tDCS to alleviate depres-
sive symptoms. Stronger stimulation, more stimulation sessions, and
tDCS in less severely affected patients might generate larger effects, as
implied by the results of the study by Brunoni et al. (2013). Moreover
this study is in favor for a superior efficacy of combined tDCS and phar-
macological intervention, which makes sense, given the deficient LTP
hypothesis of depression, the positive impact of both agents alone on
symptoms, and the strengthening of tDCS-induced LTP-like plasticity
by application of serotonin reuptake-inhibitors (Nitsche et al., 2009b).
tDCS seems to be relatively well tolerated, however, hypomania, and
manifest mania were described in relatively rare cases (see Table 3),
which might hint to the importance of “dosed” stimulation. Future stud-
ies should be designed to identify optimally suited stimulation proto-
cols with regard to the above-mentioned parameters, and, given the
positive results of the study by Brunoni et al. (2013), it might make
sense to conduct a large multi-center double-blinded sham-controlled
trial. The ClinicalTrials.gov registry shows a relatively large amount of
35 studies, 14 of them are recruiting subjects currently. Some of these
studies aim to further elucidate the interaction of tDCS with antidepres-
sant medication or medication known to improve the efficacy of anodal
tDCS, such as b-cycloserine (Nitsche et al., 2004b), combine tDCS with
cognitive training of prefrontal functions, compare the efficacy of differ-
ent electrode positions, test the impact of remote “boosting” sessions of
tDCS on the maintenance of therapeutic effects, broaden the application
of tDCS to specific depression syndromes, such as post-stroke depres-
sion, and explore the cognitive effect of tDCS in more detail. The results
of these studies might help to identify optimized stimulation protocols,
to learn more about the cognitive impact of tDCS in depression, and
suitable patient groups. With regard to treatment of manic symptoms
in bipolar disorders, currently no active studies are registered.

Addiction

Substance abuse or dependence remains difficult to treat and relapse
rates are high. It is related to abnormal reinforcement of the brain re-
ward circuitry, and prefrontal cortical networks including the DLPFC
exert a crucial role in inhibitory control mechanisms involved in addic-
tion (Bechara, 2005; Koob and Volkow, 2010). Indeed, prefrontal tDCS

can modify decision-making processes, which may share some common
mechanisms with impulsive behavior in addiction, as shown in healthy
subjects (Boggio et al.,2010a; Fecteau et al., 2007a,b; Knoch et al., 2008).
In accordance, decision-making in a risk-taking task similar to the ones
applied in the above-mentioned studies was modulated in chronic
marijuana users via bilateral DLPFC tDCS, and a significant reduction
of craving following right-anodal/left-cathodal tDCS was observed in
these patients (Boggio et al., 2010b). Similar acute effects of bilateral
tDCS (single session) were reported for decreasing craving in alcohol-
dependent patients (Boggio et al, 2008b), and cigarette smokers
(Fregni et al., 2008). In the latter study, tDCS reduced additionally the
amount of smoked cigarettes. In a follow-up study, the authors per-
formed 5 consecutive days of bilateral DLPFC stimulation (anodal—left/
cathodal—right), which resulted in decreased cigarette consumption in
addition to reduced craving (Boggio et al., 2009b).

In summary, tDCS over DLPFC seems to be suited to reduce sub-
stance craving in addiction. It seems that bilateral stimulation with
both polarities is equally effective, except for the study with marijuana
users, in which only anodal tDCS over right DLPFC diminished craving.
The therapeutic effect of tDCS on substance abuse could be related to
the disruption of the existing, balanced reward circuits within and
between left and right DLPFCs. However, further exploration of the
underlying mechanisms with optimized stimulation protocols and ex-
perimental designs is required. Importantly, so far in most studies only
acute effects of the stimulation have been explored, but long-lasting
effects would be needed to make these clinically relevant. This short-
coming of the currently available studies might at least be partially
overcome by active studies registered in ClinicalTrials.gov, in which
one study aims to evaluate extended effects of tDCS on smoking cessa-
tion (NCT01710410), and two other ones are testing the effects of
extended stimulation protocols on alcohol, and crack-cocaine depen-
dence (NCT01337297, NCT01330394).

Schizophrenia

Schizophrenia is a chronic mental disorder characterized by dysfunc-
tions of perception of reality, emotion and cognition. Clinical manifesta-
tions include positive (hallucinations, delusions, thought disorders, and
bizarre behavior) and negative (affective flattening, anhedonia, alogia,
and attention impairment) symptoms, which are associated with dys-
regulation of several neuromodulatory transmitters, consequently lead-
ing to pathological alterations of cortical activity and plasticity. Deficits
of both, excitability-enhancing, and -diminishing neuroplasticity in-
duced by anodal and cathodal tDCS were demonstrated in schizophrenia
patients (Hasan et al., 2011, 2012a,b). Since tDCS-induced cortical plas-
ticity is dependent on NMDA receptors and is modulated by dopaminer-
gic transmission (Monte-Silva et al., 2010b), this observation can be
explained by a disbalance of the glutamatergic and dopaminergic sys-
tems in schizophrenia (Goto and Grace, 2007; Javitt, 2010).

For the impact of tDCS on deficient cognitive functions in schizo-
phrenia, one study demonstrated that patients with schizophrenia, as
compared to healthy controls, show a more rightward bias in a line
bisection task, which was partially corrected by parietal tDCS (Ribolsi
et al, 2012). However, in another study probabilistic associative
learning in schizophrenia was not improved by simultaneous anodal
tDCS over left DLPFC, with the exception of a subset of patients with rel-
atively good baseline performance (Vercammen et al., 2011). These re-
sults suggest that tDCS may be able to facilitate cognitive functions in
schizophrenia, yet more studies are needed to delineate the specific
modulatory effects of tDCS on different aspects of cognition, with con-
sideration to timing or connectivity between related cortical areas,
and more specific and optimized stimulation protocols.

Regarding the therapeutic application of NIBS in schizophrenia,
inhibiting activity of the left temporoparietal cortex (TPC) to reduce
auditory hallucinations, a frequent positive symptom, is one poten-
tially relevant target of stimulation. For improvement of negative
symptoms, enhancement of left DLPFC activity, which is dysfunctional
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in schizophrenia, is a common approach. Some rTMS studies have
demonstrated beneficial effects of respective rTMS protocols (for re-
view, see Freitas et al., 2009). Brunelin and co-workers explored the
efficacy of tDCS to ameliorate auditory hallucinations, and improve neg-
ative symptoms, by a bipolar stimulation approach (Brunelin et al.,
2012). They applied tDCS in schizophrenic patients within a sham-
controlled, double-blinded design, in which excitability of the left
DLPFC was enhanced by anodal stimulation, and excitability of the left
TPC was reduced by cathodal tDCS (2 mA for 20 min each session, 2 ses-
sions per day for 5 consecutive days). The authors describe a significant
reduction of auditory hallucinations together with reduced negative
symptoms accomplished by active tDCS relative to sham stimulation.
This effect lasted for up to 3 months after treatment. In a case report,
in accordance with this result, cathodal tDCS over the left TPC reduced
auditory hallucinations after 10 consecutive daily sessions with 1 mA
intensity and 15 min duration (Homan et al.,, 2012). Regional cerebral
blood flow measured by arterial spin labeling further confirmed a sig-
nificant reduction of blood flow under the cathode after each session
and also during the treatment course, which might serve as neurobio-
logical explanation for the beneficial effect of tDCS. Taken together,
the results of these pilot studies are promising, but need confirmation
by future studies. Furthermore, nothing is known about optimally suit-
ed tDCS protocols for the treatment of schizophrenia. Five active
monocentric studies are registered in ClinicalTrials.gov, which encom-
pass the treatment of schizophrenia by tDCS. Three of these studies
are dedicated to the improvement of negative symptoms, including
cognition, in schizophrenia, and two other studies aim to treat negative
as well as positive symptoms, one of those in childhood-onset schizo-
phrenia. These studies are well-suited to improve the evidence of an ef-
fect of tDCS on clinical symptoms, and to broaden its application range
to children. Moreover, some of the studies include measures of physio-
logical effects of tDCS in schizophrenia, which seems to be especially
important in this disease because alterations of the glutamatergic, and
dopaminergic systems have a profound impact on tDCS-induced plas-
ticity (Monte-Silva et al., 2009, 2010b; Nitsche et al., 2012). In none of
the studies however systematic titration of tDCS parameters is planned
to explore optimally efficient stimulation protocols.

Anxiety disorders

Anxiety disorders represent another major category of psychiatric
diseases. Neuroimaging studies revealed abnormal patterns of cortical
and subcortical activation as well as functional connectivity in OCD pa-
tients. Striatal dysfunction mainly of the caudate nucleus is thought to
result in insufficient thalamic gating, and hyperactivity of orbitofrontal,
and anterior cingulate cortices, resulting in intrusive thoughts, and anx-
iety. Moreover, the connectivity of the ventral striatum with prefrontal
cortices seems to be enhanced in these patients (Del Casale et al., 2011;
Sakai et al., 2011). Recently, an interhemispheric disbalance with left
hyper- and right hypo-activation was suggested by functional imaging
in a case report (Volpato et al,, 2012). In this single case study, 2 mA
20 min tDCS (cathode-F3/anode-posterior neck) did not alter OCD
symptoms, although the balance of cortical activity between the two
hemispheres was restored, and depression and anxiety were improved
(Volpato et al., 2012). No currently ongoing studies are listed in
ClinicalTrials.gov for the treatment of OCD or other anxiety disorders,
which is surprising, because the physiological background of these dis-
eases is promising with regard to the application of tDCS, especially
since tDCS has been shown to have an impact on functional cortico-
subcortical networks including cortico-striatal, and cortico-thalamic
loops (Polania et al., 2012b), which are involved in the respective
diseases.

Dementia

Since tDCS has been shown to improve cognitive functions in nu-
merous studies in healthy humans (Kuo and Nitsche, 2012), it can be
speculated to exert possible beneficial effect in dementia. From the

multitude of dementia syndromes, the impact of tDCS has been so
far only explored for Alzheimer's disease, and fronto-temporal degen-
eration, in a limited number of studies.

The main physiological substrates of Alzheimer's disease seem to be
temporo-parietal hypo-activity (Fernandez et al., 2002) caused by cho-
linergic, GABA-ergic, and glutamatergic dysfunction (Iwakiri et al,
2005; Parameshwaran et al., 2008; Schliebs and Arendt, 2011; Yamin,
2009), amongst others, leading to impaired plasticity, and oscillatory
activity, and thus causing cognitive deficits. Therefore, improving
plasticity by tDCS is a conceptually promising approach to diminish
cognitive decline. Indeed, in a double-blinded sham-controlled study,
one session of anodal tDCS of the left temporoparietal area enhanced
performance in a word recognition task, while cathodal tDCS worsened
it, and sham stimulation had no effect (Ferrucci et al.,, 2008). Another
double-blinded study revealed a positive effect of single-session anodal
tDCS of the left DLPFC and temporal cortices on performance in a visual
recognition memory task (Boggio et al., 2009b). In a follow-up study of
the same group, bilateral temporal anodal tDCS over five consecutive
days improved visual memory for at least four weeks after stimulation
(Boggio et al., 2012).

The impact of tDCS on cognitive functions, specifically verbal fluency,
in frontotemporal degeneration (FTD) was explored in a double-blinded,

sham-controlled study, in which 2 mA anodal stimulation of the left dor- :

solateral prefrontal cortex was applied for 40 min. tDCS had no effect on
performance in these subjects (Huey et al., 2007). Possible reasons for
this negative result might be increased distance between brain and elec-
trodes due to cerebral atrophy, co-commitment CNS-active medication,
as well as the pathology of the disease itself, which includes degenera-
tion of glutamatergic neurons, which might have abolished any efficacy
of tDCS, as shown in healthy subjects, in which tDCS-induced plasticity

was absent under an NMDA receptor antagonist (Nitsche et al., 2003a). :

In general, the number of studies exploring the effects of tDCS on de-
mentia is limited, especially with regard to clinically meaningful long-
term effects, and nothing is known about optimally suited stimulation
protocols. In the ClinicalTrials.gov registry, four active studies are listed,

one of them exploring the effect of tDCS on apathy in Alzheimer's dis- :

ease, and the remaining ones exploring the impact of tDCS on language
performance, and memory consolidation, in patients suffering from
mild cognitive impairment, and thus at a relatively early stage of cogni-
tive decline.

Optimizing stimulation protocols

One critical aspect of the future impact of tDCS is the optimization
of stimulation frequency, duration, and strength. In the following we

provide an overview about optimized stimulation protocols at M1. It :

is not completely clear if the results of motor cortex stimulation can
be transferred completely to other cortical areas, however no better
data are available at present.

For anodal tDCS, stronger and longer-lasting stimulation resulted in
larger effects, as shown by varying stimulation intensity between 0.2
and 1 mA, and stimulation duration between 1 and 5 min (Nitsche
and Paulus, 2000). On this basis, increase of stimulation duration and
stimulation intensity has been extended in many clinical studies, as
compared to the initial protocols. For stimulation intensity, tDCS with
2 mA for 10 min resulted in effects similar to stimulation with 1 mA
(Kuo et al,, 2012). Extending the stimulation duration to 20 min with
2 mA current strength reverses the effects of cathodal tDCS from excit-
ability diminution to enhancement (Batsikadze et al., 2013). Moreover,
prolongation of anodal tDCS (1 mA, electrode size 35 cm?) to 26 min
generates excitability diminution (Monte-Silva et al., in press). These
results reveal a non-linear relationship between stimulation duration,
intensity, and the direction of after-effects, which limits simple exten-
sion of stimulation duration to obtain stronger and longer-lasting after-
effects. It should however be taken into account that in some studies
longer anodal tDCS durations have been performed in neuropsychiatric
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patients with a positive outcome on clinical symptoms, most proba-
bly due to excitability-enhancing effects of stimulation. Boggio et al.
(2009a) describe a reduction of pain symptoms by 30 min anodal stim-
ulation, Frank et al. (2012) describe improvement of tinnitus, and
Brunoni et al. (2013) describe reduction of depression symptoms by
the same stimulation duration and polarity. Similar results have been
obtained in some studies conducted in neurological diseases (Floel et
al,, in press). Thus a one-to-one translation of the physiological results
obtained in healthy young subjects, as in the study conducted by
Monte-Silva et al. (in press) might be questionable. Specific conditions
of the brain state in the target population, such as compromised
LTP-like plasticity in depressed subjects, might broaden the range for
excitability-enhancing effects of tDCS. However, possible non-linear
effects of stimulation on excitability should be taken into account with
regard to the implementation of intensified stimulation protocols. In-
creasing tDCS intensity is furthermore restricted due to the induction
of pain sensations at current strengths of about 3 mA and a blinding
problem at 2 mA (with electrode sizes between about 20 and 35 cm?
(O'Connell et al., 2012)). Repetition of stimulation can enhance the
after-effects of tDCS. The physiological effects of repetitive stimulation
on the after-effects of tDCS have been evaluated for relatively short (3
and 20 min), and long (3 and 24 h) inter-tDCS intervals (1 mA,
35 cm? electrodes, 9 min cathodal/13 min anodal tDCS) (Monte-Silva
et al.,, 2010a; Monte-Silva et al., in press). Specifically the short intervals
prolonged the after-effects for at least 24 h after anodal tDCS (Monte-
Silva et al,, 2012). These results are in accordance with late-phase plas-
ticity induction procedures in animal slice preparations, where a critical
time window of about 30 min was described (Reymann and Frey,
2007). Another option to prolong and strengthen the after-effects of
tDCS is the combination of stimulation with pharmacological interven-
tions. The partial NMDA receptor agonist b-cycloserine, amphetamine,
and serotonin all have been demonstrated to enhance the efficacy of an-
odal tDCS (Nitsche et al., 2004a,b, 2009b), whereas application of
L-dopa, as well as dopamine agonists extends the after-effects of cath-
odal stimulation (Kuo et al., 2008a; Monte-Silva et al.,, 2009, 2010b;
Nitsche et al., 2006). The latter effects have been shown to be non-
linearly dosage-dependent. Combination of pharmacological interven-
tion with stimulation might be especially well-suited for diseases in
which the specific drugs are applied for therapeutic reasons, e.g. appli-
cation of serotonin reuptake inhibitors with anodal tDCS for treatment
of depression (Brunoni et al., 2012).

For combination of tDCS with task performance, which plays no
major role in psychiatric applications so far, but is of importance for
the implementation of tDCS in rehabilitative settings with regard to
neurological diseases, e.g. motor rehabilitation after stroke (Floel et
al,, in this issue), timing of the stimulation in relation to performance
might be important. For most rehabilitation protocols, stimulation
and rehabilitation therapy were so far conducted simultaneously,
but optimal timing has not been systematically evaluated in patients.
In healthy subjects, with regard to a sequential motor learning task,
anodal tDCS of the primary motor cortex during, but not before learn-
ing improved performance, and premotor cortex stimulation, which
did not improve performance during learning, resulted in improved
outcome when applied during REM sleep, during which this area is
involved in reconsolidation processes (Nitsche et al., 2003d, 2008,
2010). For a visuo-motor consolidation task, however, anodal tDCS
improved performance when applied not only during, but also before
learning (Antal et al., 2004, 2008). In the latter condition, also cathodal
tDCS improved performance. Thus it might be speculated that anodal
tDCS during learning boosts task-related plasticity via the addition of
stimulation-induced plasticity, maybe mediated via activity-dependent
calcium influx, while anodal stimulation before performance might
gate task-related plasticity, and cathodal tDCS before performance
might improve it via homeostatic mechanisms (Ziemann and Siebner,
2008). In contrast, a recently conducted study showed superior effects
of anodal stimulation, when applied before performance of an implicit

visual perceptual learning task (Pirulli et al., in press). However in
this study a repetitive tDCS protocol with relatively short stimulation
durations was performed, which makes it difficult to speculate about
the net impact of this protocol on cortical excitability (Fricke et al.,
2011). Although conceptually it makes sense that for learning tDCS
during performance should be more effective, due to not only NMDA
receptor-, but also calcium channel-mediated intracellular calcium in-
crease, the latter induced by tDCS-dependent membrane depolarization,
clearly more systematic studies are needed to explore this topic further.
For cognitive processes, which might not require the induction of
neuroplasticity, e.g. working memory, or attentional processes, similarly
most studies have been performed with tDCS during performance, but
systematic studies comparing differently timed stimulation protocols
are missing (for an overview see Kuo and Nitsche, 2012).

With regard to the focality of tDCS, the conventional bipolar
electrode arrangement with large electrodes delivers a relatively non-
focal stimulation (Nitsche et al., 2008). More focal effects can be
achieved by reducing stimulation electrode size, or increasing the size
of the return electrode, thus enabling a functional monopolar stimula-
tion (Nitsche et al., 2007). Moreover, the return electrode can be placed
at remote areas distant from the head, although tDCS might be less effi-
cient with this electrode arrangement (Moliadze et al., 2010). This does
not imply that an extracephalic return electrode position makes stimu-
lation functionally ineffective, as shown by studies in which tDCS for
pain reduction (Mendonca et al., 2011), and depression (Boggio et al.,
2012; Martin et al., 2011) was applied. Statements about the relative
clinical efficacy of cephalic versus extracephalic return electrode posi-
tions are not possible, because no studies have been conducted which
compare these protocols directly. Furthermore, it cannot be decided
if different neuronal populations due to different current flow, and
electrical field orientation, are affected by these protocols. A principal
problem of an extracephalic return electrode position might be the
activation of brainstem structures, however, possible problematic vege-
tative effects have not been present in a recently conducted study
(Vandermeeren et al., 2010). Another option to focalize the effects of
tDCS might be the so-called high definition (HD) tDCS. Here a relatively
small central stimulation electrode is surrounded by four return elec-
trodes, which are thought to be functionally inert. Modeling suggests
that this electrode arrangement results in more focal effects than the
conventional electrode arrangement (Bikson et al,, 2012; Kuo et al.,
2012). Moreover, it is effective at the physiological and functional levels
(Borckardt et al., 2012; Kuo et al., 2012). Physiological validation of
increased focality of the effects however is missing so far. It waits to
be shown if more focal stimulation is more efficient for the treatment
of neuropsychiatric diseases. Better-targeted stimulation might result
in less side effects. However, in some diseases relatively large areas
would be preferentially aimed to be modulated. Therefore, benefits
and shortcomings of focal stimulation with regard to clinical application
of tDCS should be discussed thoroughly for each project.

Whereas the focus of tDCS effects so far was dedicated to regional ef-
fects under the stimulation electrodes, it also modulates the activity
within and between different cortical networks. Primary motor cortex
stimulation has been shown to increase the connectivity of cortico-
cortical, and cortico-subcortical motor network components, including
premotor, and parietal areas, as well as thalamic nuclei, and the caudate
nucleus, in the resting human brain, as shown by fMRI. An EEG study
demonstrated similar effects of tDCS on motor networks in the
gamma frequency range. Here tDCS increased respective motor task-
related activations (Polania et al,, 2011, 2012a,b,c). Beyond the motor
cortex, prefrontal tDCS affects resting network connectivity (Keeser et
al,, 2011), and anodal stimulation of the inferior frontal gyrus, an area
critically involved in language production, resulted in increased connec-
tivity of this area with other major hubs of the language network in the
resting brain. Interestingly, in this study tDCS improved word retrieval,
suggesting a functional relevance of the respective network activation
(Meinzer et al., 2012). So far, only relatively acute effects of tDCS on
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functional connectivity in healthy humans have been demonstrated.
It remains to be shown if combined stimulation of disease-relevant
connected areas have better effects than stimulation of a single structure.

Concluding remarks

This review gathers the clinical trials conducted for the treatment of
neuropsychiatric diseases via “modern” tDCS protocols, i.e. stimulation
protocols which have been physiologically validated in most cases at
M1. In general, the results from most of the studies are promising, dem-
onstrating the efficacy of stimulation in a variety of neuropsychiatric
diseases accompanied by pathological alterations of cortical excitability
and activity. In principal, two groups of studies can be discerned: early
pilot experiments, which are dedicated primarily to the evaluation of
principal efficacy of tDCS to improve symptoms, and later controlled tri-
als, which aim to induce clinically relevant effects. For the latter, a lim-
ited number of diseases were explored so far. Relatively clear, also
clinically relevant effects seem to be achieved in pain syndromes with
regard to neurological diseases discussed in the present paper, and for
depression with regard to psychiatric diseases. Importantly, side effects
so far are rare, and mild. Before tDCS can be implemented into clinical
practice, however, larger multi-center studies are also needed for
these relatively well explored diseases. One important aspect to clarify
before conduction of these studies is the definition of optimized stimu-
lation protocols. Here interesting approaches exist, which are however
only available for stimulation in healthy subjects so far. The transferabil-
ity of the respective results to patient populations awaits yet to be
investigated.
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